(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WIPO PCT

(19) World Intellectual Property

Organization International Bureau

mational Bureau

(43) International Publication Date 12 September 2013 (12.09.2013)

- (51) International Patent Classification: A01N 43/42 (2006.01)
- (21) International Application Number:

PCT/US2013/029176

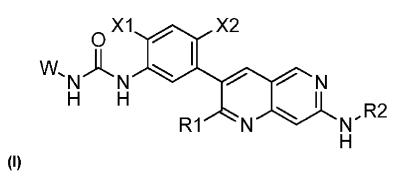
- (22) International Filing Date: 5 March 2013 (05.03.2013)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 61/607,807 7 March 2012 (07.03.2012) US
- (71) Applicants: DECIPHERA PHARMACEUTICALS, LLC [US/US]; 643 Massachusetts, Suite 200, Lawrence, Kansas 66044 (US). ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, Indiana 46285 (US).
- (72) Inventors: FLYNN, Daniel L.; 4165 Blackjack Oak Drive, Lawrence, Kansas 66047 (US). KAUFMAN, Michael D.; 4708 Muirfield Drive, Lawrence, Kansas 66047 (US). VOGETI, Lakshminarayana; 4032 West 26th Terrace, Lawrence, Kansas 66047 (US). WISE, Scott C.; 754 North 976 Road, Lawrence, Kansas 66047 (US). LU, Wei-Ping; 214 Campbell Court, Lawrence, Kansas 66049 (US). SMITH, Bryan D.; 1312 Inverness, Lawrence, Kansas 66049 (US). CALDWELL, Timothy M.; 1020 South Moundridge Drive, Lawrence, Kansas 66049 (US). PATT, William C.; 801 Wheaton Drive, Lawrence, Kansas 66049 (US). HENRY, James Robert; Lilly Corporate Center, Indianapolis, Indiana 46285 (US). HIPSKIND, Philip Arthur; Lilly Corporate Center, Indianapolis, Indiana 46285 (US). PENG, Sheng-Bin; Lilly Corporate Center, Indianapolis, Indiana 46285 (US).

(10) International Publication Number WO 2013/134298 A1

(74) Agents: FARMER, J. Dean et al.; Cooley LLP, 1299 Pennsylvania Avenue, Northwest, Suite 700, Washington, District of Columbia 20004 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).


Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

with international search report (Art. 21(3))

(54) Title: RAF INHIBITOR COMPOUNDS

(57) Abstract: This invention provides compounds of Formula (I) or a pharmaceutically acceptable salt thereof; pharmaceutical compositions comprising a compound of Formula (I); and use of a compound of Formula (I) for treating specified cancers.

PCT/US2013/029176

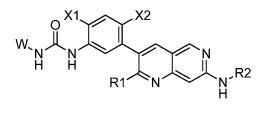
Raf Inhibitor Compounds

This application claims priority to U.S. Patent Application Serial Number 61/607,807, filed March 7, 2012, entitled "(1,6-NAPHTHYRIDIN-3-YL) PHENYL
5 UREAS EXHIBITING ANTI-CANCER AND ANTI-PROLIFERATIVE ACTIVITIES," the contents of which are incorporated herein in their entirety.

The Ras/Raf/mitogen-activated protein kinase kinase (also known as MAP2K; MAPK kinase; and MAPK/ERK kinase or MEK)/extracellular signal-regulated kinase (ERK) signaling cascade (referred to herein as "Ras/Raf/MEK/ERK" or

- 10 "Ras/Raf/MEK/MAPK") is an evolutionary conserved pathway that plays an integral role in development and tissue homeostasis in mammals. This signaling pathway consists of a kinase cascade that relays extracellular signals to the nucleus for gene expression and key cellular functions. Gene expression controlled by the Ras/Raf/MEK/ERK signaling pathway regulates fundamental cellular processes including proliferation, differentiation,
- 15 apoptosis, and angiogenesis. These diverse roles of Ras/Raf/MEK/ERK signaling are aberrantly activated in various types of cancer. Mutations in genes within this pathway may lead to constitutively active proteins resulting in increased cell proliferation, and resistance to apoptosis.
- Raf (a serine/threonine-protein kinase) is encoded by a gene family consisting of
 three genes affording three Raf isoform members (B-Raf, C-Raf (Raf-1) and A-Raf).
 Each of these proteins share highly conserved amino-terminal regulatory regions and
 catalytic domains at the carboxy terminus. Unless otherwise indicated, Raf refers to all
 three members. Although each isoform plays a role in the Ras/Raf/MEK/ERK pathway,
 B-Raf is the main activator of the kinase MEK. B-Raf is recruited by Ras:GTP to the
- intracellular cell membrane where B-Raf becomes activated. In turn, B-Raf is responsible for activation of MEK1/2 and MEK1/2 for activation of the kinases ERK1/ERK2.
 Mutations in the B-Raf gene allow for B-Raf to signal independently of upstream signals.
 As a result, mutated B-Raf protein (such as V600E) causes excessive downstream signaling of MEK and ERK. This leads to excessive cell proliferation and survival and
- 30 oncogenesis. Overactivation of the signaling cascade by mutated B-Raf has been implicated in multiple malignancies.

5


10

The receptor tyrosine kinase (RTK) c-KIT (also called CD117), is expressed on a wide variety of cell types. The ligand for c-KIT is stem cell factor (SCF). The binding of SCF to the extracellular domain of c-KIT induces receptor dimerization and activation of downstream signaling pathways, including the RAS/RAF/MEK/ERK pathway. Mutant c-KIT has been implicated in the pathogenesis of several cancers.

Despite B-Raf specific inhibitors (such as vemurafenib), and compounds such as those disclosed in WO 2006/039718 and WO 2008/034008, there is a need for a Raf inhibitor active in inhibiting all isoforms of Raf proteins including A-Raf, B-Raf, C-Raf, and B-Raf V600E mutation. There is a further need for a Raf inhibitor that is active against tumor cells with upstream pathway activation by N-Ras mutations, K-Ras mutations, or cKIT mutations. Furthermore, there remains a need to provide alternative B-Raf inhibitors for treatment of cancer. Accordingly, the present invention provides Raf inhibitors which may be active in inhibiting all isoforms of Raf proteins. Also, the present invention provides Raf inhibitors which may be active against tumor cells with

15 upstream pathway activation by N-Ras mutations, K-Ras mutations, or cKIT mutations. Additionally, the present invention provides alternative inhibitors of B-Raf. Furthermore, the present invention provides alternative inhibitors of B-Raf which may be useful for treating cancer.

One aspect of the present invention provides a compound of Formula I:

I

20

25

wherein

W is C1-C6 alkyl, optionally substituted with one or more of Z1A, Z1B, Z1C, Z1D, or Z1E; C4-C8 cycloalkyl optionally substituted with one or two Z2A or Z2B substituents; or C4-C8 heterocyclyl optionally substituted with one or two Z2A or Z2B substituents;

Each Z1A, Z1B, Z1C, Z1D, Z1E is individually and independently C1-C6 alkyl, halogen, fluoro-C1-C6 alkyl wherein the alkyl chain is partially or completely

fluorinated, C1-C4alkoxy, hydroxyl, fluoroC1-C4alkoxy wherein the alkyl chain is partially or completely fluorinated, cyano, C3-C8 cycloalkyl optionally substituted with one or two Z2A or Z2B substituents, phenyl optionally substituted with one to three Z2A or Z2B, or R5;

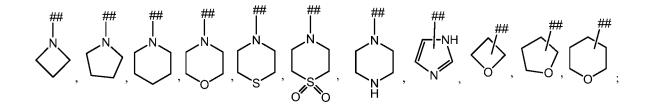
5

10

15

each Z2A and Z2B is individually and independently hydrogen, C1-C6 alkyl, halogen, fluoro-C1-C6 alkyl wherein the alkyl chain is partially or completely fluorinated, hydrogen, C1-C4alkoxy, hydroxyl, or cyano;

X1 is fluoro or H;


X2 is methyl, halogen, or hydrogen;

R1 is selected from C1-C4alkyl, or hydrogen;

R2 is C1-C6 alkyl, hydrogen, $-(CH_2)_n$ -OR3, $-(CH_2)_n$ -NR3(R4), $-(CH_2)_q$ -R5, -C(O)-R7, or R6-substituted C5-C6heteroaryl;

each R3 and R4 is individually and independently H, C1-C6 alkyl;

each R5 is independently and individually selected from the group consisting of

and wherein the symbol (##) is the point of attachment to $-(CH_2)_q$ - or Z1A-E;

20

25

each R5 is optionally substituted with $-(R6)_p$;

each R6 is individually and independently C1-C6 alkyl, $-(CH_2)_m$ -CN, $-(CH_2)_m$ -OR3, $-(CH_2)_m$ -NR3(R4), $-(CH_2)_m$ -C(O)NR3(R4), or $-(CH_2)_m$ -C(O)-R3, wherein each alkyl or alkylene is optionally substituted with one or two C1-C6 alkyl;

R7 is C1-C6alkyl, C3-C8 cycloalkyl, hydrogen, $-(CH_2)_m$ -NR3(R4), $-(CH_2)_m$ -R5, or $-(CH_2)_m$ -OR3;

each m is individually and independently 0, 1, 2, or 3; n is 2, 3, or 4; p is 0, 1, 2, 3, or 4; q is 0, 1, or 2;

5

or a pharmaceutically acceptable salt thereof.

A second aspect of the present invention provides a pharmaceutical composition comprising a compound of Formula I, or a pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable carrier.

10 A third aspect of the present invention provides a method of inhibiting Raf in a cancer patient in need thereof, comprising administering a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof, to said patient.

A fourth aspect of the present invention provides a method of treating a cancer
which is acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), chronic lymphoblastic leukemia (CLL), myelodysplastic syndrome, ovarian cancer, melanoma, small-cell lung cancer, non-small-cell lung cancer, colorectal cancer, pancreatic cancer, prostate cancer, liver cancer or thyroid cancer in a patient comprising administering to a patient in need thereof a therapeutically effective amount of a
compound of Formula I, or a pharmaceutically acceptable salt thereof.

A fifth aspect of the present invention provides a method of treating a cancer which is thyroid cancer, ovarian cancer, melanoma, AML or colorectal cancer in a patient comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof.

25 A sixth aspect of the present invention provides a compound of Formula I, or a pharmaceutically acceptable salt thereof, for use in therapy.

A seventh aspect of the present invention provides a compound of Formula I, or a pharmaceutically acceptable salt thereof, for use in the treatment of a cancer which is acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), chronic

30 lymphoblastic leukemia (CLL), myelodysplastic syndrome, ovarian cancer, melanoma,

10

15

small-cell lung cancer, non-small-cell lung cancer, colorectal cancer, pancreatic cancer, prostate cancer, liver cancer or thyroid cancer.

An eighth aspect of the present invention provides a compound of Formula I, or a pharmaceutically acceptable salt thereof, for use in the treatment of a cancer which is thyroid cancer, ovarian cancer, melanoma, AML or colorectal cancer.

A ninth aspect of the present invention provides use of a compound of Formula I or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment of a cancer which is acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), chronic lymphoblastic leukemia (CLL), myelodysplastic syndrome, ovarian cancer, melanoma, small-cell lung cancer, non-small-cell lung cancer, colorectal cancer, pancreatic cancer, prostate cancer, liver cancer or thyroid cancer.

A tenth aspect of the present invention provides use of a compound of Formula I, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment of a cancer which is thyroid cancer, ovarian cancer, melanoma, AML or colorectal cancer.

In one embodiment, the compound of Formula I is a compound wherein: W is C1-C6 alkyl, optionally substituted with one or more of Z1A, Z1B, Z1C, Z1D, or Z1E; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: W is 20 C4-C8 cycloalkyl optionally substituted with one or two Z2A or Z2B substituents; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: W is C4-C8 heterocyclyl optionally substituted with one or two Z2A or Z2B substituents; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: Each Z1A, Z1B, Z1C, Z1D, Z1E is individually and independently C1-C6 alkyl, halogen, fluoro-C1-C6 alkyl wherein the alkyl chain is partially or completely fluorinated, C1-C4alkoxy, hydroxyl, fluoroC1-C4alkoxy wherein the alkyl chain is partially or completely fluorinated, cyano, C3-C8 cycloalkyl optionally substituted with one or two

30 Z2A or Z2B substituents, phenyl optionally substituted with one to three Z2A or Z2B, orR5; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: each Z2A and Z2B is individually and independently C1-C6 alkyl, halogen, fluoro-C1-C6 alkyl wherein the alkyl chain is partially or completely fluorinated, hydrogen, C1-C4alkoxy, hydroxyl, or cyano; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: X1 is fluoro or H; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: X1 is fluoro; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: X2 is methyl, halogen, or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: X2 is methyl; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: X2 is fluoro; or a pharmaceutically acceptable salt thereof.

15 In one embodiment, the compound of Formula I is a compound wherein: X2 is hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R1 is C1-C4alkyl, or H; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R1 is 20 methyl; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R1 is hydrogen; or a pharmaceutically acceptable salt thereof.

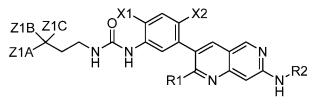
In one embodiment, the compound of Formula I is a compound wherein: R2 is C1-C6 alkyl, hydrogen, –(CH₂)_n-OR3, –(CH₂)_n-NR3(R4), –(CH₂)_q-R5, –C(O)-R7, or R6-substituted C5-C6heteroaryl; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R2 is C1-C6 alkyl; or a pharmaceutically acceptable salt thereof.

10

In one embodiment, the compound of Formula I is a compound wherein: R2 is hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R2 is - (CH₂)_n-OR3 and n is 2-4; or a pharmaceutically acceptable salt thereof.


In one embodiment, the compound of Formula I is a compound wherein: R2 is – C(O)-R7 and R7 is C1-C6alkyl, C3-C8 cycloalkyl, hydrogen, – $(CH_2)_m$ -NR3(R4), – $(CH_2)_m$ -R5, or – $(CH_2)_m$ -OR3; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R2 is – C(O)-R7 and R7 is C1-C6alkyl, hydrogen or C3-C8 cycloalkyl; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R2 is – C(O)-R7 and R7 is – $(CH_2)_m$ -NR3(R4), or – $(CH_2)_m$ -R5 and m is 0-3; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound wherein: R2 is – 15 C(O)-R7 and R7 is –(CH₂)_m-NR3(R4), or –(CH₂)_m-R5 and m is 0; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound of Formula Ia

Ia

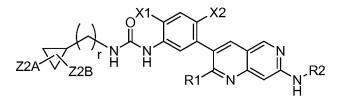
20 wherein: each Z1A, Z1B, Z1C is individually and independently C1-C2 alkyl, fluorine, trifluoromethyl, C1-C2alkoxy, hydroxyl, or cyano and X1, X2, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ia is a compound wherein: Z1A, Z1B, Z1C are methyl and X1, X2, R1 and R2 are as defined above for formula I.

In one embodiment, the compound of Formula Ia is a compound wherein: Z1A and Z1B are methyl and Z1C is fluorine, trifluoromethyl, C1-C2alkoxy, hydroxyl, or cyano and X1, X2, R1 and R2 are as defined above for formula I.

In one embodiment, the compound of Formula Ia is a compound wherein: X1 is fluoro, X2 is methyl, fluoro, or hydrogen, and Z1A, Z1B, Z1C, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ia is a compound wherein: R1 is
methyl or hydrogen and Z1A, Z1B, Z1C, X1, X2, and R2 are as defined above for
formula I; or a pharmaceutically acceptable salt thereof.


In one embodiment, the compound of Formula Ia is a compound wherein: R2 is C1-C6alkyl or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ia is a compound wherein: R2 is – 10 (CH₂)_n-OR3, –(CH₂)_n-NR3(R4), –(CH₂)_q-R5, and R3, R4, R5, n, and q are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ia is a compound wherein: R2 is - C(O)-R7, and R7 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

15 In one embodiment, the compound of Formula Ia is a compound wherein: R2 is R6-substituted C5-C6heteroaryl and R6 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound of Formula Ib

Ib

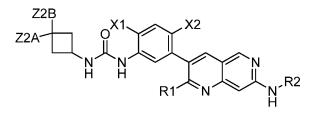
20

wherein:

Z2A and Z2B are individually and independently hydrogen, C1-C2 alkyl, trifluoromethyl, or C1-C2 alkoxy; and wherein r is 1 or 2, and X1, X2, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ib is a compound wherein: X1 is fluoro, X2 is methyl, fluoro, or hydrogen, and Z2A, Z2B, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ib is a compound wherein: R1 is 5 methyl or hydrogen and Z2A, Z2B, X1, X2, and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.


In one embodiment, the compound of Formula Ib is a compound wherein: R2 is C1-C6alkyl or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ib is a compound wherein: R2 is -10 (CH₂)_n-OR3, -(CH₂)_n-NR3(R4), -(CH₂)_q-R5, and R3, R4, R5, n, and q are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ib is a compound wherein: R2 is -C(O)-R7, and R7 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ib is a compound wherein: R2 is 15 R6-substituted C5-C6heteroaryl and R6 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compounds of Formula I is a compound of Formula Ic

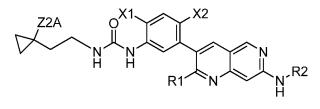
Ic

wherein:

Z2A and Z2B are individually and independently C1-C2 alkyl, hydrogen, trifluoromethyl, or C1-C2 alkoxy, and X1, X2, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ic is a compound wherein: X1 is fluoro, X2 is methyl, fluoro, or hydrogen, and Z2A, Z2B, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ic is a compound wherein: R1 is 5 methyl or hydrogen and Z2A, Z2B, X1, X2, and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.


In one embodiment, the compound of Formula Ic is a compound wherein: R2 is C1-C6alkyl or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ic is a compound wherein: R2 is – 10 (CH₂)_n-OR3, –(CH₂)_n-NR3(R4), –(CH₂)_q-R5, and R3, R4, R5, n, and q are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ic is a compound wherein: R2 is - C(O)-R7, and R7 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

15 In one embodiment, the compound of Formula Ic is a compound wherein: R2 is R6-substituted C5-C6heteroaryl and R6 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ib is a compound of Formula Id

Id

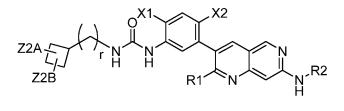
20

wherein:

Z2A is C1-C2 alkyl, trifluoromethyl, C1-C2 alkoxy, or hydrogen; and wherein X1, X2, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Id is a compound wherein: X1 is fluoro, X2 is methyl, fluoro, or hydrogen, and Z2A, Z2B, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Id is a compound wherein: R1 is 5 methyl or hydrogen and Z2A, Z2B, X1, X2, and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.


In one embodiment, the compound of Formula Id is a compound wherein: R2 is C1-C6alkyl or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Id is a compound wherein: R2 is – 10 (CH₂)_n-OR3, –(CH₂)_n-NR3(R4), –(CH₂)_q-R5, and R3, R4, R5, n, and q are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Id is a compound wherein: R2 is - C(O)-R7, and R7 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

15 In one embodiment, the compound of Formula Id is a compound wherein: R2 is R6-substituted C5-C6heteroaryl and R6 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound of Formula Ie

Ie

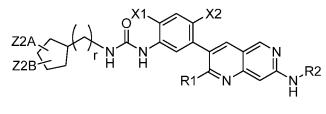
20

wherein:

Z2A and Z2B are individually and independently hydrogen, C1-C2 alkyl, trifluoromethyl, or C1-C2 alkoxy; and wherein r is 1 or 2, and X1, X2, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ie is a compound wherein: X1 is fluoro, X2 is methyl, fluoro, or hydrogen, and Z2A, Z2B, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ie is a compound wherein: R1 is 5 methyl or hydrogen and Z2A, Z2B, X1, X2, and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.


In one embodiment, the compound of Formula Ie is a compound wherein: R2 is C1-C6alkyl or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ie is a compound wherein: R2 is – 10 (CH₂)_n-OR3, –(CH₂)_n-NR3(R4), –(CH₂)_q-R5, and R3, R4, R5, n, and q are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ie is a compound wherein: R2 is - C(O)-R7, and R7 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

15 In one embodiment, the compound of Formula Ie is a compound wherein: R2 is R6-substituted C5-C6heteroaryl and R6 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound of Formula If

If

20

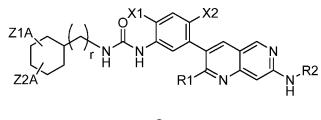
wherein:

Z2A and Z2B are individually and independently hydrogen, C1-C2 alkyl, trifluoromethyl, or C1-C2 alkoxy; and wherein r is 1 or 2, and X1, X2, R1 and R2 are as

25 defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula If is a compound wherein: X1 is fluoro, X2 is methyl, fluoro, or hydrogen, and Z2A, Z2B, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula If is a compound wherein: R1 is 5 methyl or hydrogen and Z2A, Z2B, X1, X2, and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.


In one embodiment, the compound of Formula If is a compound wherein: R2 is C1-C6alkyl or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula If is a compound wherein: R2 is – 10 (CH₂)_n-OR3, –(CH₂)_n-NR3(R4), –(CH₂)_q-R5, and R3, R4, R5, n, and q are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula If is a compound wherein: R2 is - C(O)-R7, and R7 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

15 In one embodiment, the compound of Formula If is a compound wherein: R2 is R6-substituted C5-C6heteroaryl and R6 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula I is a compound of Formula Ig

Ig

wherein:

20

Z2A and Z2B are individually and independently hydrogen, C1-C2 alkyl, trifluoromethyl, or C1-C2 alkoxy; and wherein r is 1 or 2, and X1, X2, R1 and R2 are as

25 defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ig is a compound wherein: X1 is fluoro, X2 is methyl, fluoro, or hydrogen, and Z2A, Z2B, R1 and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ig is a compound wherein: R1 is 5 methyl or hydrogen and Z2A, Z2B, X1, X2, and R2 are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ig is a compound wherein: R2 is C1-C6alkyl or hydrogen; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ig is a compound wherein: R2 is – 10 (CH₂)_n-OR3, –(CH₂)_n-NR3(R4), –(CH₂)_q-R5, and R3, R4, R5, n, and q are as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ig is a compound wherein: R2 is - C(O)-R7, and R7 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In one embodiment, the compound of Formula Ig is a compound wherein: R2 is R6-substituted C5-C6heteroaryl and R6 is as defined above for formula I; or a pharmaceutically acceptable salt thereof.

In some embodiments, any one or more hydrogens of the alkyl substituents of W, X2, R1, and R2 may be substituted with deuterium.

In some embodiments, the invention comprises a compound selected from the group consisting of a compound selected from 1-(3,3-dimethylbutyl)-3-(2-fluoro-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-cyano-3methylbutyl)-3-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3yl)phenyl)urea, 1-(3,3-dimethylbutyl)-3-(5-(2-ethyl-7-(methylamino)-1,6-

25 naphthyridin-3-yl)-2,4-difluorophenyl)urea, 1-(3,3-dimethylbutyl)-3-(5-(2-ethyl-7-(methylamino)-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)urea, 1-cycloheptyl-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea,

1-(3,3-dimethylbutyl)-3-(4-methyl-3-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylbutyl)-3-(5-(2-ethyl-7-(methylamino)-

30 1,6-naphthyridin-3-yl)-2-fluorophenyl)urea, 1-cycloheptyl-3-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-cyano-3-methylbutyl)-3-(2-

fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3cyano-3-methylbutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(2-(trifluoromethoxy)ethyl)urea, 1-(4,4-

- difluorocyclohexyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-((3,3-dimethylcyclobutyl)methyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methylcyclobutyl)-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methylcyclobutyl)-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methylcyclobutyl)-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methylcyclobutyl)-3-(2-fluoro-5-(2-methyl-3-(2-fluoro-5-(2-methylcyclobutyl)-3-(2-fluoro-5-(2-methylcyclobu
- methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3-methyl-trans(3-fluorocyclobutyl))urea, 1-(3,3-dimethylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3-dimethylbutyl)urea, 1-(3,3-
- dimethylbutyl)-3-(4-fluoro-3-(2-methyl-7-(methylamino)-1,6-naphthyridin-3yl)phenyl)urea, 1-(2,2-dimethyltetrahydro-2H-pyran-4-yl)-3-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-((3,3dimethylcyclobutyl)methyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(4,4-difluorocyclohexyl)-3-(2-fluoro-4-methyl-5-
- 20 (7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-(trifluoromethyl)cyclopropyl)ethyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3-methoxy-3-methylbutyl)urea, 1-(trans-4-cyano-4-methylcyclohexyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-
- 1,6-naphthyridin-3-yl)phenyl)urea, 1-(cis-4-cyano-4-methylcyclohexyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-methylcyclopropyl)ethyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-methoxycyclopropyl)ethyl)urea, 1-
- 30 (cyclohexylmethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(3-ethoxy-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1methoxycyclopropyl)ethyl)urea, 1-(2-fluoro-4-methyl-5-(7-(methylamino)-1,6-

naphthyridin-3-yl)phenyl)-3-(3-methoxy-3-methylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(4-methoxy-4methylpentyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-((6-methylpyridin-3-yl)amino)-1,6naphthyridin-3-yl)phenyl)-3-(3,3-dimethylbutyl)urea, N-(3-(5-(3-(3,3-5 dimethylbutyl)ureido)-2-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2-ethyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(5-(3-(3,3-dimethylbutyl)ureido)-2-fluorophenyl)-2-ethyl-1,6naphthyridin-7-yl)acetamide, N-(3-(4-fluoro-3-(3-(3-fluoro-3methylbutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7-yl)isobutyramide, N-(3-10 (5-(3-(4,4-difluorocyclohexyl)ureido)-4-fluoro-2-methylphenyl)-2-methyl-1,6-N-(3-(5-(3-(2naphthyridin-7-yl)cyclopropanecarboxamide, cyclopropylethyl)ureido)-4-fluoro-2-methylphenyl)-2-methyl-1,6-naphthyridin-7yl)cyclopropanecarboxamide, N-(3-(3-(4,4-difluorocyclohexyl)ureido)-4fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(4-fluoro-2-methyl-5-(3-(2-(trifluoromethoxy)ethyl)ureido)phenyl)-2-methyl-1,6-15 naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(5-(3-cyano-3methylbutyl)ureido)-2,4-difluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3cyano-3-methylbutyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(2-20 methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-fluoro-cis(3methylcyclobutyl))-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3yl)phenyl)-3-(3,3-dimethylcyclobutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3yl)-2-fluoro-4-methylphenyl)-3-(3-fluoro-3-methylbutyl)urea, 1-(5-(7-amino-2-methyl-25 1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-methoxy-3-methylbutyl)urea, 1-(5-(7-amino-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-fluoro-3methylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4methylphenyl)-3-cycloheptylurea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2fluoro-4-methylphenyl)-3-(2-(1-(trifluoromethyl)cyclopropyl)ethyl)urea, 1-(2cyclopropylethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-30 3-yl)phenyl)urea, 1-cycloheptyl-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3,3-trifluoropropyl)urea, 1-(2,4-

difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(4,4difluorocyclohexyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(4,4,4-trifluoro-3,3-dimethylbutyl)urea, 1-(2,4difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(4,4,4-

- 5 trifluorobutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(3,3,3-trifluoropropyl)urea, 1-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3-methoxy-3methylbutyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-
- 10 (methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-methylcyclopropyl)ethyl)urea,
 1-(5-(7-(ethylamino)-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl) 3-(3-fluoro-3-methylbutyl)urea,
 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-5-(7-

(isopropylamino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, 1-(2cyclobutylethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-

- 15 yl)phenyl)urea, 1-(2-cyclobutylethyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(4,4-difluoropentyl)-3-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-fluoro-trans(3methylcyclobutyl))-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-
- dimethylbutyl)ureido)-2,4-difluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(5-(3-(3,3-dimethylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6naphthyridin-7-yl)acetamide, N-(3-(3-(3-cyclohexylureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(3-(3-cyclohexylureido)-4-fluorophenyl)-2methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(3-(3-cyclopentylureido)-4-

fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(4-fluoro-5-(3-(3-fluoro-

- 3-methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)propionamide, N-(3-(2,4-difluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(2,4-difluoro-5-(3-(3-hydroxy-3-methylbutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(4-
- fluoro-2-methyl-5-(3-(3,3,3-trifluoropropyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7yl)cyclopropanecarboxamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7yl)cyclopropanecarboxamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3-
- methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)isobutyramide, N-(3-(4-fluoro-3-(3-(3,3,3-trifluoropropyl)ureido)phenyl)-2-methyl-1,6naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(2,4-difluoro-5-(3-(3-fluoro-3methylbutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7-yl)cyclopropanecarboxamide,

N-(3-(2,4-difluoro-5-(3-(4,4,4-trifluorobutyl)ureido)phenyl)-2-methyl-1,6-

- naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(5-(3-(2-cyclopropylethyl)ureido)2,4-difluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin7-yl)formamide, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3(3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-
- 20 methylphenyl)-3-(4,4,4-trifluoro-3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-
- 25 naphthyridin-3-yl)phenyl)-3-phenethylurea, 3-(3-(3-(3-(3,3-dimethylbutyl)ureido)-4fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)-1,1-dimethylurea, N-(3-(3-(3,3dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)azetidine-1carboxamide, 3-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2-methylphenyl)-2methyl-1,6-naphthyridin-7-yl)-1,1-dimethylurea, 1-(3,3-dimethylbutyl)-3-(2-fluoro-5-(7-
- 30 ((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, 1-(2,4-difluoro-5-(7-(2-hydroxyethylamino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)-3-(3,3-dimethylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-5-(2-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-3-yl)phenyl)-3-isopentylurea, 1-(2-fluo

4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2,4,4trimethylpentan-2-yl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-isopentylurea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, 1-((3,3-

- 5 difluorocyclobutyl)methyl)-3-(2-fluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6naphthyridin-3-yl)-4-methylphenyl)urea, 1-(3-cyano-3-methylbutyl)-3-(2-fluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, (S)-1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2hydroxy-3,3-dimethylbutyl)urea, (R)-1-(2-fluoro-4-methyl-5-(2-methyl-7-
- (methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1 (2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2 morpholinoethyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-hydroxycyclopropyl)ethyl)urea, 1-(4,4-dimethylpentan-2-yl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-
- 15 naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3-methylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3,3-trifluoro-2hydroxypropyl)urea, (R)-1-(4,4-dimethylpentan-2-yl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, (S)-1-(4,4-dimethylpentan-2-yl)-3-
- (2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1 (2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3 (tetrahydro-2H-pyran-4-yl)urea, 1-(3-cyano-3-methylbutyl)-3-(2,4-difluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)-3-(3-fluoro-3-
- 25 methylbutyl)urea, 1-(2,4-difluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6naphthyridin-3-yl)phenyl)-3-((3,3-difluorocyclobutyl)methyl)urea, (R)-1-(2-fluoro-4methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3methylbutyl)urea, (S)-1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3-methylbutyl)urea, (R)-1-(5-(7-amino-2-
- 30 methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-hydroxy-3,3dimethylbutyl)urea, (S)-1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2cyclopropyl-2-hydroxyethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-

10

PCT/US2013/029176

naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(oxetan-2-ylmethyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-((tetrahydro-2H-pyran-2yl)methyl)urea, or 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl) 3 (tetrahydrofuran 3-yl)urea

5 3-yl)phenyl)-3-(tetrahydrofuran-3-yl)urea.

For convenience, certain terms employed in the specification, examples and claims are collected here. Unless defined otherwise, all technical and scientific terms used in this disclosure have the same meanings as commonly understood by one of ordinary skill in the art to which this disclosure belongs. The initial definition provided for a group or term provided in this disclosure applies to that group or term throughout

the present disclosure individually or as part of another group, unless otherwise indicated.

The compounds of this disclosure include any and all possible isomers, stereoisomers, enantiomers, diastereomers, tautomers, and pharmaceutically acceptable salts of the disclosed compounds. Thus, the terms "compound," "compounds", "test

15 compound" or "test compounds" as used in this disclosure refer to the compounds of this disclosure and any and all possible isomers, stereoisomers, enantiomers, diastereomers, tautomers, and pharmaceutically acceptable salts.

Definitions

- The term "alkyl" as used herein refers to both a straight chain alkyl, wherein alkyl
 chain length is indicated by a range of numbers, and a branched alkyl, wherein a
 branching point in the chain exists, and the total number of carbons in the chain is
 indicated by a range of numbers. In exemplary embodiments, "alkyl" refers to an alkyl
 chain as defined above containing 1, 2, 3, 4, 5, or 6 carbons (*i.e.*, C1-C6 alkyl). Examples
 of an alkyl group include, but are not limited to, methyl, ethyl, propyl, *iso*-propyl, butyl, *iso*-butyl, *secondary*-butyl, *tertiary*-butyl, pentyl, and hexyl.
- *iso-outyl, secondary-outyl, tertiary-outyl,* pentyl, and nexyl.

The term "alkoxy" as used herein refers to –O–(alkyl), wherein "alkyl" is as defined above.

The term "branched alkoxy" as used herein refers to –O–(branched alkyl), wherein "branched alkyl" is as defined above.

20

PCT/US2013/029176

The term "alkylene" as used herein refers to an alkyl moiety interposed between two other atoms. In exemplary embodiments, "alkylene" refers to an alkyl moiety as defined above containing 1, 2, or 3 carbons. Examples of an alkylene group include, but are not limited to -CH₂-, -CH₂CH₂-, and -CH₂CH₂CH₂-. In exemplary embodiments, alkylene groups are branched.

5

The term "alkynyl" as used herein refers to a carbon chain containing one carboncarbon triple bond. In exemplary embodiments, "alkynyl" refers to a carbon chain as described above containing 2 or 3 carbons (*i.e.*, C2-C3 alkynyl). Examples of an alkynyl group include, but are not limited to, ethyne and propyne.

10 The term "aryl" as used herein refers to a cyclic hydrocarbon, where the ring is characterized by delocalized π electrons (aromaticity) shared among the ring members, and wherein the number of ring atoms is indicated by a range of numbers. In exemplary embodiments, "aryl" refers to a cyclic hydrocarbon as described above containing 6, 7, 8, 9, or 10 ring atoms (*i.e.*, C6-C10 aryl). Examples of an aryl group include, but are not 15 limited to, benzene, naphthalene, tetralin, indene, and indane.

The term "cycloalkyl" as used herein refers to a monocyclic saturated carbon ring, wherein the number of ring atoms is indicated by a range of numbers. In exemplary embodiments, "cycloalkyl" refers to a carbon ring as defined above containing 3, 4, 5, 6, 7, or 8 ring atoms (*i.e.*, C3-C8 cycloalkyl). Examples of a cycloalkyl group include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.

The term "halogen" or "halo" as used herein refers to fluorine, chlorine, bromine, and iodine.

The term "heterocycle" or "heterocyclyl" as used herein refers to a cyclic 25 hydrocarbon, wherein at least one of the ring atoms is an O, N, or S, wherein the number of ring atoms is indicated by a range of numbers. Heterocyclyl moieties as defined herein have C or N bonding hands. For example, in some embodiments, a ring N atom from the heterocyclyl is the bonding atom of the heterocylic moiety. In exemplary embodiments, "heterocyclyl" refers to a cyclic hydrocarbon as described above containing 4, 5, or 6 ring

30 atoms (*i.e.*, C4-C6 heterocyclyl). Examples of a heterocycle group include, but are not limited to, aziridine, oxirane, thiirane, azetidine, oxetane, thietane, pyrrolidine,

PCT/US2013/029176

tetrahydrofuran, pyran, thiopyran, thiomorpholine, thiomorpholine S-oxide, thiomorpholine S-dioxide, oxazoline, tetrahydrothiophene, piperidine, tetrahydropyran, thiane, imidazolidine, oxazolidine, thiazolidine, dioxolane, dithiolane, piperazine, oxazine, dithiane, and dioxane.

5 The term "heteroaryl" as used herein refers to a cyclic hydrocarbon, where at least one of the ring atoms is an O, N, or S, the ring is characterized by delocalized π electrons (aromaticity) shared among the ring members, and wherein the number of ring atoms is indicated by a range of numbers. Heteroaryl moieties as defined herein have C or N bonding hands. For example, in some embodiments, a ring N atom from the heteroaryl is
10 the bonding atom of the heteroaryl moiety. In exemplary embodiments, "heteroaryl" refers to a cyclic hydrocarbon as described above containing 5 or 6 ring atoms (*i.e.*, C5-C6 heteroaryl). Examples of a heteroaryl group include, but are not limited to, pyrrole, furan, thiene, oxazole, thiazole, isoxazole, isothiazole, imidazole, pyrazole, oxadiazole, thiadiazole, triazole, tetrazole, pyridine, pyrimidine, pyrazine, pyridazine, and triazine.

15 The term "substituted" in connection with a moiety as used herein refers to a further substituent which is attached to the moiety at any acceptable location on the moiety. Unless otherwise indicated, moieties can bond through a carbon, nitrogen, oxygen, sulfur, or any other acceptable atom.

The term "salts" as used herein embraces pharmaceutically acceptable salts commonly used to form alkali metal salts of free acids and to form addition salts of free bases. The nature of the salt is not critical, provided that it is pharmaceutically acceptable. Suitable pharmaceutically acceptable acid addition salts may be prepared from an inorganic acid or from an organic acid. Exemplary pharmaceutical salts are disclosed in Stahl, P.H., Wermuth, C.G., Eds. *Handbook of Pharmaceutical Salts:*

- 25 Properties, Selection and Use; Verlag Helvetica Chimica Acta/Wiley-VCH: Zurich, 2002, the contents of which are hereby incorporated by reference in their entirety. Specific non-limiting examples of inorganic acids are hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids include, without limitation, aliphatic, cycloaliphatic, aromatic, arylaliphatic, and
- 30 heterocyclyl containing carboxylic acids and sulfonic acids, for example formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, stearic,

PCT/US2013/029176

salicylic, *p*-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, cyclohexylaminosulfonic, algenic, 3-hydroxybutyric, galactaric or galacturonic acid. Suitable pharmaceutically acceptable salts of free acid-containing compounds

- 5 disclosed herein include, without limitation, metallic salts and organic salts. Exemplary metallic salts include, but are not limited to, appropriate alkali metal (group Ia) salts, alkaline earth metal (group IIa) salts, and other physiological acceptable metals. Such salts can be made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc. Exemplary organic salts can be made from primary amines, secondary amines,
- 10 tertiary amines and quaternary ammonium salts, for example, tromethamine, diethylamine, tetra-N-methylammonium, N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine.

The terms "administer," "administering, or "administration" as used herein refer to either directly administering a compound or pharmaceutically acceptable salt of the compound or a composition to a subject.

The term "carrier" as used herein encompasses carriers, excipients, and diluents, meaning a material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material involved in carrying or transporting a pharmaceutical agent from one organ, or portion of the body, to another organ or portion

of the body.

20

The term "disorder" is used in this disclosure to mean, and is used interchangeably with, the terms disease, condition, or illness, unless otherwise indicated.

- The terms "effective amount" and "therapeutically effective amount" are used 25 interchangeably in this disclosure and refer to an amount of a compound that, when administered to a subject, is capable of reducing a symptom of a disorder in a subject. The actual amount which comprises the "effective amount" or "therapeutically effective amount" will vary depending on a number of conditions including, but not limited to, the particular disorder being treated, the severity of the disorder, the size and health of the
- 30 patient, and the route of administration. A skilled medical practitioner can readily determine the appropriate amount using methods known in the medical arts.

PCT/US2013/029176

The terms "isolated" and "purified" as used herein refer to a component separated from other components of a reaction mixture or a natural source. In certain embodiments, the isolate contains at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%,

5

10

20

25

at least about 90%, at least about 95%, or at least about 98% of the compound or pharmaceutically acceptable salt of the compound by weight of the isolate.

The phrase "pharmaceutically acceptable" as used herein refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

As used in this disclosure, the terms "patient" or "subject" include, without limitation, a human or an animal. Exemplary animals include, but are not limited to, mammals such as mouse, rat, guinea pig, dog, cat, horse, cow, pig, monkey, chimpanzee, haboon, or thesus monkey

15 baboon, or rhesus monkey.

"Therapeutically effective amount" or "effective amount" means the dosage of the compound, or pharmaceutically acceptable salt thereof, or pharmaceutical composition containing an exemplified compound of Formula I, or pharmaceutically acceptable salt thereof, necessary to inhibit B-Raf, C-Raf, A-Raf and B-Raf V600E signaling in a cancer patient, and either destroy the target cancer cells or slow or arrest the progression of the cancer in a patient. The exact dosage required to treat a patient and the length of treatment time will be determined by a physician in view of the stage and severity of the disease as well as the specific needs and response of the individual patient and the particular compound administered. Although expressed as dosage on a per day basis, the dosing regimen may be adjusted to provide a more optimal therapeutic benefit to a patient. In addition to daily dosing, twice-a-day (BID) or thrice-a-day (TID) dosing may be appropriate. BID dosing is currently preferred.

The terms "treatment," "treat," and "treating," are meant to include the full spectrum of intervention for the cancer from which the patient is suffering, such as

30 administration of the active compound to alleviate, slow or reverse one or more of the symptoms and to delay progression of the cancer even if the cancer is not actually

PCT/US2013/029176

eliminated. Treating can be curing, improving, or at least partially ameliorating the disorder. The patient to be treated is a mammal, in particular a human being.

Structural, chemical and stereochemical definitions are broadly taken from IUPAC recommendations, and more specifically from Glossary of Terms used in Physical

 Organic Chemistry (IUPAC Recommendations 1994) as summarized by Müller, P. *Pure Appl. Chem.* 1994, *66*, pp. 1077-1184 and Basic Terminology of Stereochemistry (IUPAC Recommendations 1996) as summarized by Moss, G.P. *Pure Appl. Chem.* 1996, *68*, pp. 2193-2222.

Atropisomers are defined as a subclass of conformers which can be isolated as separate chemical species and which arise from restricted rotation about a single bond.

Regioisomers or structural isomers are defined as isomers involving the same atoms in different arrangements.

Enantiomers are defined as one of a pair of molecular entities which are mirror images of each other and non-superimposable.

15 Diastereomers or diastereoisomers are defined as stereoisomers other than enantiomers. Diastereomers or diastereoisomers are stereoisomers not related as mirror images. Diastereoisomers are characterized by differences in physical properties, and by some differences in chemical behavior towards achiral as well as chiral reagents.

The term "tautomer" as used herein refers to compounds produced by the 20 phenomenon wherein a proton of one atom of a molecule shifts to another atom. See March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures, 4th Ed., John Wiley & Sons, pp. 69-74 (**1992**). Tautomerism is defined as isomerism of the general form

G-X-Y=Z ◄► X=Y-Z-G

25 where the isomers (called tautomers) are readily interconvertible; the atoms connecting the groups X, Y and Z are typically any of C, H, O, or S, and G is a group which becomes an electrofuge or nucleofuge during isomerization. The most common case, when the electrofuge is H⁺, is also known as "prototropy." Tautomers are defined as isomers that arise from tautomerism, independent of whether the isomers are isolable.

5

PCT/US2013/029176

The exemplified compounds of the present invention are preferably formulated as a pharmaceutical composition using a pharmaceutically acceptable carrier and administered by a variety of routes. Preferably, such compositions are for oral administration. Such pharmaceutical compositions and processes for preparing them are well known in the art. *See, e.g.*, REMINGTON: THE SCIENCE AND PRACTICE OF PHARMACY (A. Gennaro, *et al.*, eds., 19th ed., Mack Publishing Co., 1995).

The exemplified compounds of the present invention are capable of reaction with a number of inorganic and organic acids to form pharmaceutically acceptable acid addition salts. Such pharmaceutically acceptable salts and common methodology for
preparing them are well known in the art. *See, e.g.*, P. Stahl, *et al.*, HANDBOOK OF PHARMACEUTICAL SALTS: PROPERTIES, SELECTION AND USE, (VCHA/Wiley-VCH, 2002); S.M. Berge, *et al.*, "Pharmaceutical Salts," *Journal of Pharmaceutical Sciences*, Vol. 66, No. 1, January 1977.

The compounds of Formula I, or a pharmaceutically acceptable salt thereof, may be prepared by a variety of procedures known in the art, as well as those described below. The specific synthetic steps may be combined in different ways to prepare the Formula I compounds, or a pharmaceutically acceptable salt thereof.

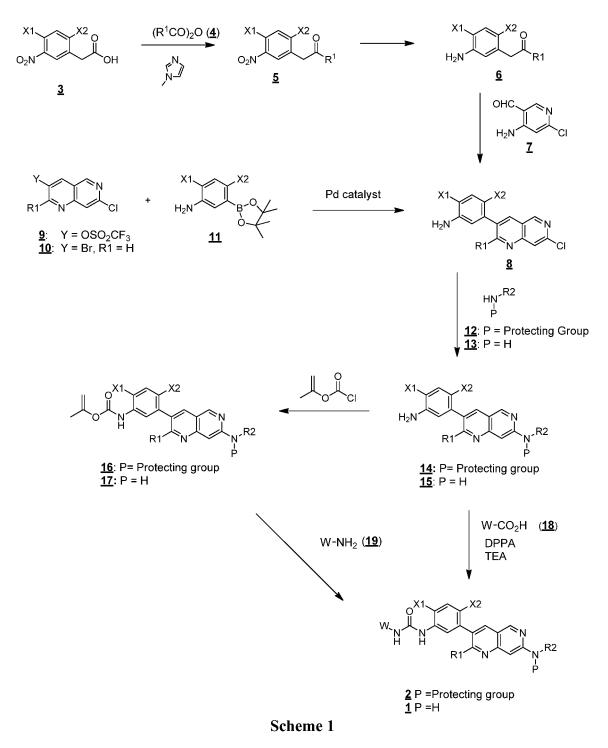
The compounds employed as initial starting materials in the synthesis of the compounds of Formula I are well known and, to the extent not commercially available, are readily synthesized using specific references provided, by standard procedures commonly employed by those of ordinary skill in the art, or are found in general reference texts.

Examples of known procedures and methods include those described in general reference texts such as Comprehensive Organic Transformations, VCH Publishers Inc,

25 1989; Compendium of Organic Synthetic Methods, Volumes 1-10, 1974-2002, Wiley Interscience; Advanced Organic Chemistry, Reactions Mechanisms, and Structure, 5th Edition, Michael B. Smith and Jerry March, Wiley Interscience, 2001; Advanced Organic Chemistry, 4th Edition, Part B, Reactions and Synthesis, Francis A. Carey and Richard J. Sundberg, Kluwer Academic / Plenum Publishers, 2000, etc., and references cited therein.

30 ChemDraw version 10 or 12 (CambridgeSoft Corporation, Cambridge, MA) was used to name the structures of intermediates and exemplified compounds.

The following abbreviations are used in this disclosure and have the following definitions: "ADP" is adenosine diphosphate, "ATP" is adenosine triphosphate, "BippyPhos" refers to (5-(di-tert-butylphosphino)-1′, 3′, 5′-triphenyl-1′H-[1,4′]bipyrazole), "DCM" is dichloromethane, "DIEA" is *N*,*N*-diisopropylethylamine,


- 5 "DMA" is *N*,*N*-dimethylacetamide, "DMF" is *N*,*N*-dimethylformamide, "DMSO" is dimethylsulfoxide, "DPPA" is diphenylphosphryl azide, "DTT" is dithiothreitol, "ESI" is electrospray ionization, "EtOAc" is ethyl acetate, "EtOH" is ethanol, "GST" is glutathione S-transferase, "h" is hour or hours, "IC₅₀" is half maximal inhibitory concentration, min is minutes, "Hex" refers to hexanes, "IPA" refers to isopropyl alcohol,
- 10 "MeCN" is acetonitrile, "MeOH" is methanol, "MS" is mass spectrometry, "MTBE" is tert-butyl methyl ether, "NADH" is nicotinamide adenine dinucleotide, "NMR" is nuclear magnetic resonance, "PBS" is phosphate buffered saline, "Pd₂(dba)₃" refers to tris(dibenzylideneacetone)dipalladium(0), "Pd(PPh₃)₄" is tetrakis(triphenylphosphine)palladium, "Pet" is petroleum, "satd." refers to saturated,
- "RT" is room temperature which is also known as "ambient temp," which will be understood to consist of a range of normal laboratory temperatures ranging from 15-25
 C, "TBTU" is *O*-(Benzotriazol-1-yl)-*N*,*N*,*N'*,*N'*-tetramethyluronium tetrafluoroborate,
 "TEA" is triethylamine, "TFA" is trifluoroacetic acid, "THF" is tetrahydrofuran, "Tris" is tris(hydroxymethyl)aminomethane, and "XantPhos" is (4,5-bis(diphenylphosphino)-9,9-
- 20 dimethylxanthene).

General Chemistry

The compounds of the present invention can be prepared according to the following synthetic schemes by methods well known and appreciated in the art. Suitable reaction conditions for the steps of these schemes are well known in the art and

- 25 appropriate substitutions of solvents and co-reagents are within the skill of the art. Likewise, it will be appreciated by those skilled in the art that synthetic intermediates may be isolated and/or purified by various well known techniques as needed or desired, and that frequently, it will be possible to use various intermediates directly in subsequent synthetic steps with little or no purification. Furthermore, the ordinary skilled artisan will
- 30 appreciate that in some circumstances, the order in which moieties are introduced is not critical. The particular order of steps required to produce the compounds of Formula I is dependent upon the particular compound being synthesized, the starting compound, and the relative liability of the substituted moieties, as is well appreciated by the ordinary

skilled chemist. All substituents, unless otherwise indicated, are as previously defined, and all reagents are well known and appreciated in the art.

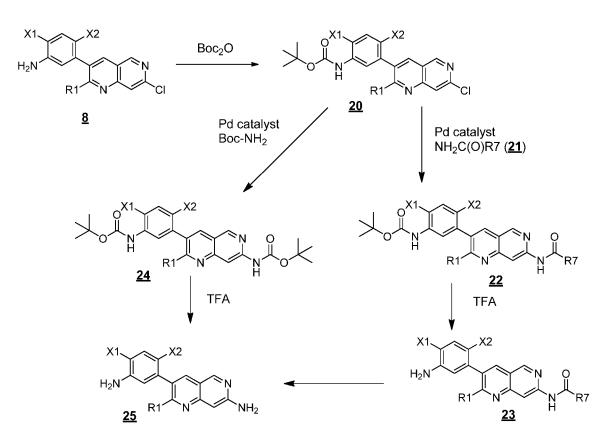
Compounds of Formula 1 can be prepared as illustrated in Scheme 1.

Compound <u>3</u> can react with a carboxylic acid anhydride <u>4</u> in the presence of 1methylimidazole to provide <u>5</u>. Nitro compound <u>5</u> in turn can be exposed to standard reducing conditions, for example hydrogenation in the presence of palladium on carbon, to provide amine <u>6</u>. Treatment of <u>6</u> with aldehyde <u>7</u> in the presence of a base, for example potassium hydroxide or sodium hydroxide, provides compound <u>8</u>. Compound <u>8</u> can also be synthesized by an alternative route. More specifically, triflate <u>9</u> or bromide <u>10</u> is reacted with boronate <u>11</u> in the presence of a palladium catalyst, such as tetrakis(triphenylphosphine)palladium (Pd(PPh₃)₄), in the presence of a base such as sodium bicarbonate or potassium carbonate, in a suitable solvent mixture such as dioxane and water at elevated temperature to provide compound <u>8</u>.

10

5

Compound <u>8</u> can then react with compound <u>12</u> or <u>13</u> to provide <u>14</u> or <u>15</u> respectively. Those skilled in the art will appreciate that in some instances it will be preferable to mask hydrogen of the NHR2 moiety of compound 1 with a protecting group ("P") and the "P" moiety of compounds 12, 14, 16, and 2 represents a standard protecting 15 group. Examples of protecting groups include 4-methoxybenzyl, tert-butoxycarbonyl and trifluoroacetyl. Those skilled in art will understand that the protecting groups of intermediates 14 and 16 can be removed immediately after synthesis to provide 15 or 17 respectively, or alternately may be carried forward in Scheme 1. In one embodiment, the reaction of $\underline{12}$ or $\underline{13}$ with $\underline{8}$ is accomplished by heating the two components in a suitable solvent such as N-methylpyrrolidinone (NMP) or ethanol, optionally with microwave 20 irradiation and optionally on the presence of an added base, for example diisopropylethylamine. In another embodiment, the reaction of 12 or 13 with 8 is accomplished by heating the partners in the presence of a palladium catalyst, such as Pd₂(dba)₃ or palladium acetate, in the presence of a ligand such as XantPhos (4,5-

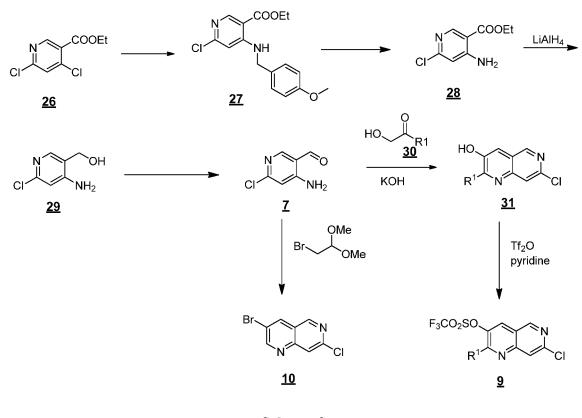

25 bis(diphenylphosphino)-9,9-dimethylxanthene) or BippyPhos (5-(di-tert-butylphosphino)-1', 3', 5'-triphenyl-1'H-[1,4']bipyrazole), and a base, for example cesium carbonate, in a suitable solvent such as dioxane.

Compound <u>14</u> or <u>15</u> can be converted to compound <u>2</u> or <u>1</u> directly by reaction with a carboxylic acid of formula <u>18</u> under conditions of the Curtius rearrangement to 30 provide urea <u>2</u> or <u>1</u>. More specifically, compound <u>14</u> or <u>15</u> is reacted with <u>18</u> in the presence of a base, such as triethylamine, and diphenylphosphoryl azide (DPPA), in a suitable solvent such as dioxane with heating to provide <u>2</u> or <u>1</u> respectively. The protecting group of <u>2</u>, in turn, is removed by standard conditions appropriate for said

protecting group, for example by exposure to trifluoroacetic acid in the instance in which P is 4-methoxybenzyl or tert-butoxycarbonyl. In an alternate synthesis, compound <u>14</u> or <u>15</u> can react with isopropenyl chloroformate to provide <u>16</u> or <u>17</u> respectively. More specifically, treatment of <u>14</u> or <u>15</u> with ispropenyl chloroformate under Schotten-Baumann conditions, for example in a mixture of saturated aqueous sodium bicarbonate and ethyl acetate, or alternately in a mixture of pyridine and dichloromethane, provides <u>16</u> and <u>17</u> respectively. Further reaction of <u>16</u> or <u>17</u> with amine <u>19</u> in the presence of a base, for example N-methylpyrrolidine, in a suitable solvent, such as dioxane or tetrahydrofuran, at elevated temperature provides <u>2 or 1</u> respectively.

10

5


Scheme 2

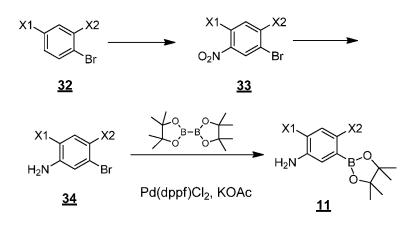
Compounds of Formula <u>15</u> wherein R2 is H (<u>25</u>) or -C(O)R7 (<u>23</u>) can also be synthesized as illustrated in Scheme 2.

15

Compound <u>8</u> can react with di-tert-butyl dicarbonate (Boc₂O) to provide Bocprotected <u>20</u>. Compound <u>20</u> can react with compound <u>21</u> in the presence of a palladium catalyst, as described above, to provide <u>22</u>. The Boc protecting group of <u>22</u> can be removed by treatment with acid to provide <u>23</u>, an example of general intermediate <u>15</u>

(Scheme 1) wherein R2 is C(O)R7. If desired, the C(O)R7 moiety can also be removed by appropriate conditions specific to the nature of R7 to provide <u>25</u>. In an analogous manner, <u>20</u> can react with tert-butyl carbamate and a palladium catalyst to provide <u>24</u>. Compound <u>24</u> can react with acid, for example trifluoroacetic acid, to effect removal of both Boc protecting groups to afford <u>25</u>, an example of general intermediate <u>15</u> wherein R2 is H.

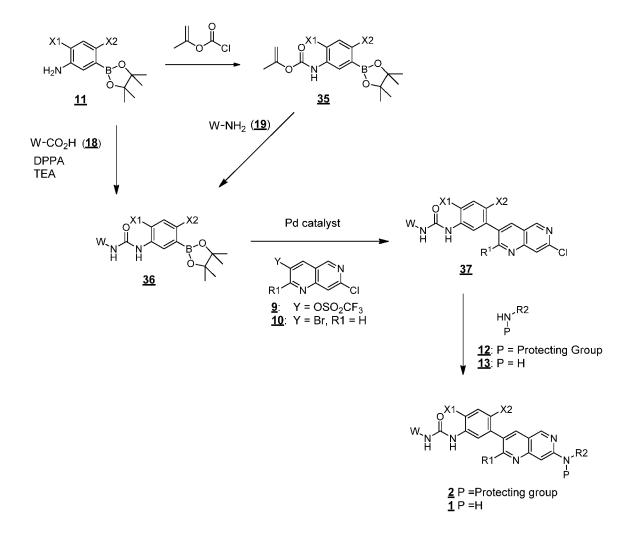
Scheme 3


10

15

Compounds $\underline{7}, \underline{9}$ and $\underline{10}$ can be prepared as illustrated in Scheme 3.

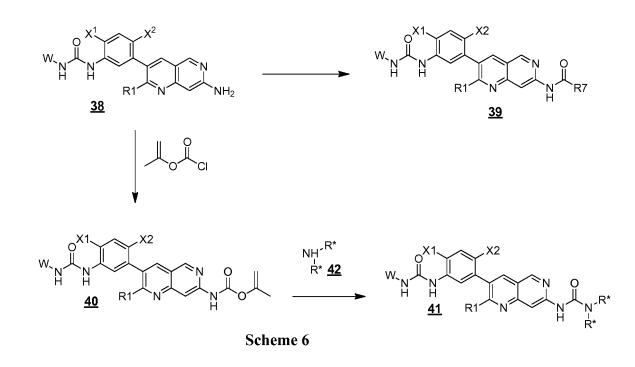
Ethyl 4,6-dichloronicotinate (<u>26</u>) is reacted with (4-methoxybenzyl)amine to provide <u>27</u>. Compound <u>27</u> is treated with acid to provide compound <u>28</u>. Compound <u>28</u> is reacted with lithium aluminum hydride (LAH) to provide alcohol <u>29</u>. Compound <u>29</u> is oxidized with manganese dioxide to provide aldehyde <u>7</u>. Reaction of compound <u>7</u> with 2bromo-1,1-dimethoxyethane and ytterbium(III) trifluoromethanesulfonate in acetontirile at elevated temperature provides compound <u>10</u>. Reaction of compound <u>7</u> with compound


<u>30</u> provides compound <u>31</u>. Reaction of compound <u>31</u> with trifluoromethanesulfonyl chloride and pyridine provides compound <u>9</u>.

Scheme 4

Compound <u>11</u> can be synthesized as illustrated in Scheme 4.

Compound <u>32</u> is nitrated by conditions familiar to the skilled artisan to provide <u>33</u>. Compound <u>33</u> is subjected to reducing conditions, for example Raney Nickel in tetrahdrofuarn, to provide <u>34</u>. Compound <u>34</u> is reacted with bis(pinacolato)diboron, a suitable base such as potassium acetate, and a suitable catalyst such as [1,1'-bis(diphenylphosphino)ferrocene]-dichloropalladium(II)–dichloromethane complex in an appropriate solvent such as dioxane or DMF at elevated temperature to provide compound <u>11</u>.



Scheme 5

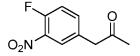
Compounds of Formula $\underline{1}$ can also be prepared as illustrated in Scheme 5.

5 Compound <u>11</u> is reacted with isopropenyl choroformate under conditions described above to provide compound 35, which is further reacted with amine 19 to provide compound 36. Alternately, compound 11 is directly converted to compound 36 by reaction with acid 18 under Curtius rearrangement conditions as described above. Compound <u>36</u> is reacted with <u>9</u> or <u>10</u> and a palladium catalyst as described above to 10 provide <u>37</u>. Further reaction of <u>37</u> with <u>12</u> or <u>13</u> is accomplished by heating the partners in the presence of a palladium catalyst, such as $Pd_2(dba)_3$ or palladium acetate, in the of a ligand XantPhos (4,5-bis(diphenylphosphino)-9,9presence such as (2-di-tert-butylphosphino-2',4',6'dimethylxanthene), tert-butyl **XPhos** triisopropylbiphenyl) or BippyPhos (5-(Di-tert-butylphosphino)-1', 3', 5'-triphenyl-1'H-

[1,4']bipyrazole), a base, for example cesium carbonate, in a suitable solvent such as dioxane to provide compound $\underline{2}$ or $\underline{1}$ respectively.

Compounds of Formula 1 wherein R2 is C(O)R7 can also be prepared from compounds of formula 1 (R2=H, <u>38</u>) as illustrated in Scheme 6. Thus, <u>38</u> is reacted with a suitable carbonylation reagent such as an acid halide or isocyanate to provide compound <u>39</u>. As an alternative, compound <u>38</u> can be reacted with isopropenyl chloroformate as described above to provide carbamate <u>40</u>. Further reaction of compound <u>40</u> with an amine (<u>42</u>: R*s are alkyl or H) or heterocyclic amine (<u>42</u>: R*s joined to form a ring)

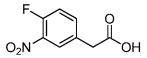
provides a compound of formula 41.


15

10

5

Preparation 1


Synthesis of 1-(4-fluoro-3-nitrophenyl)propan-2-one.

Treat a -35°C solution of fuming nitric acid (32.3 mL, 723 mmol) with 4fluorophenylacetone (1.756 ml, 13.14 mmol) and stir at -35°C for 1 h. Pour the mixture onto ice, extract with DCM (2x), dry the combined organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (1.07 g, 41%). ¹H NMR (400 MHz, DMSO-d₆): δ 7.97 (dd, J = 7.4, 2.2 Hz, 1 H), 7.58 (ddd, J = 8.6, 4.6, 2.2 Hz, 1 H), 7.52 (dd, J = 11.3, 8.6 Hz, 1 H), 3.95 (s, 2 H), 2.17 (s, 3 H).

Preparation 2

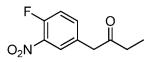
Synthesis of 2-(4-fluoro-3-nitrophenyl)acetic acid.

Treat a 0°C solution of 4-fluorophenylacetic acid (3 g, 19.46 mmol) in H₂SO₄ (20 mL) drop wise with nitric acid (0.913 mL, 20.44 mmol) and stir for 1 h. Pour the mixture onto ice, extract with DCM (2x), wash the combined organics with brine, dry over MgSO₄ and concentrate to dryness to afford the title compound (3.48 g, 90%). MS (ESI) m/z: 198.1 (M-H⁺).

The following compounds are prepared essentially by the method of Preparation 2.

Prep No.	Chemical Name	Structure	Physical Data
3	2-(2,4-difluoro-5- nitrophenyl)acetic acid	P O ₂ N OH	MS (ESI) m/z: 218.0 (M+H ⁺)
4	2-(4-fluoro-2- methyl-5- nitrophenyl)acetic acid	P O ₂ N OH	MS (ESI) m/z: 214.1 (M+H ⁺)

10


15

PCT/US2013/029176

5	2-(2-fluoro-5-	F o	¹ H NMR (400MHz, CDCl ₃): δ
	nitrophenyl)acetic		8.16 (m, 2 H), 7.18 (m, 1 H),
	acid		3.76 (s, 2 H)

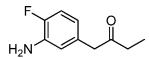
Preparation 6

Synthesis of 1-(4-fluoro-3-nitrophenyl)butan-2-one.

5

Treat a solution of 2-(4-fluoro-3-nitrophenyl)acetic acid (1.5 g, 7.53 mmol) in propionic anhydride (5.40 mL, 45.2 mmol) with 1-methylimidazole (0.600 mL, 7.53 mmol) and stir at RT overnight. Quench the mixture with H₂O, stir for 1 h, extract with EtOAc (2x), wash the combined organics with satd. Na₂CO₃, then brine, dry the organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (830 mg, 52%). ¹H NMR (400 MHz, DMSO-d₆): δ 8.00 (dd, J = 7.4, 2.2 Hz, 1 H), 7.61 (ddd, J = 8.6, 4.6, 2.2 Hz, 1 H), 7.53 (dd, J = 11.4, 8.6 Hz, 1 H), 3.95 (s, 2 H), 2.56 (q, J = 7.3 Hz, 2 H), 0.96 (t, J = 7.3 Hz, 3 H); MS (ESI) m/z: 212.1 (M+H⁺).

15


10

The following compounds are prepared essentially by the method of Preparation 6.

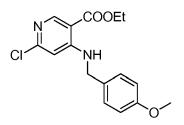
Prep No.	Chemical Name	Structure	Physical Data
7	1-(2,4-difluoro-5- nitrophenyl)propan-2- one	F O O ₂ N	MS (ESI) m/z: 216.1 (M+H ⁺)
8	1-(2,4-difluoro-5- nitrophenyl)butan-2- one	F F O O ₂ N	MS (ESI) m/z: 230.1 (M+H ⁺)

9	1-(4-fluoro-2-methyl-5-	F o	¹ H NMR (400 MHz,
	nitrophenyl)butan-2-	O ₂ N	DMSO-d ₆): δ 7.93 (d, <i>J</i> =
	one	2	8.0 Hz, 1 H), 7.40 (d, <i>J</i> =
			12.4 Hz, 1 H), 3.94 (s, 2
			H), 2.54 (q, <i>J</i> = 7.2 Hz, 2
			H), 2.18 (s, 3 H), 0.93 (t, J
			= 7.2 Hz, 3 H)
10	1-(2-fluoro-5-	r ⊂ F o	¹ H NMR (400MHz,
	nitrophenyl)propan-2-	O ₂ N	CDCl ₃): δ 8.20 (m, 1 H),
	one	2	8.17 (m, 1 H), 7.24 (s, 1
			H), 3.84 (s, 2 H), 2.28 (s, 3
			H)

Synthesis of 1-(3-amino-4-fluorophenyl)butan-2-one.

5

10

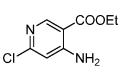

Treat a solution of 1-(4-fluoro-3-nitrophenyl)butan-2-one (0.83 g, 3.93 mmol) in EtOAc (30 mL) with 10% Pd/C (0.209 g, 0.197 mmol) and hydrogenate at atmospheric pressure (balloon) overnight. Remove the solids via filtration through diatomaceous earth, rinse well with EtOAc, concentrate the filtrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (536 mg, 75%). ¹H NMR (400 MHz, DMSO-d₆): δ 6.88 (dd, J = 11.6, 8.2 Hz, 1 H), 6.57 (dd, J = 8.9, 2.1 Hz, 1 H),

(400 MHz, DMSO-d₆): δ 6.88 (dd, J = 11.6, 8.2 Hz, 1 H), 6.57 (dd, J = 8.9, 2.1 Hz, 1 H), 6.32 (m, 1 H), 5.07 (s, 2 H), 3.55 (s, 2 H), 2.46 (q, J = 7.3 Hz, 2 H), 0.89 (t, J = 7.3 Hz, 3 H); MS (ESI) m/z: 182.1 (M+H⁺).

Prep	Chemical Name	Structure	Physical Data
No.			
12	1-(3-amino-4- fluorophenyl)propan- 2-one	H ₂ N	MS (ESI) m/z: 168.1 (M+H ⁺)
13	1-(5-amino-2,4- difluorophenyl)propan -2-one	F H ₂ N	MS (ESI) m/z: 186.1 (M+H ⁺)
14	1-(5-amino-2,4- difluorophenyl)butan- 2-one	F H ₂ N	MS (ESI) m/z: 200.1 (M+H ⁺)
15	1-(5-amino-4-fluoro- 2-methylphenyl)butan- 2-one	H ₂ N	¹ H NMR (400 MHz, DMSO- d ₆): δ 6.75 (d, J = 12.4 Hz, 1 H), 6.51 (d, J = 9.2 Hz, 1 H), 4.81 (s, 2 H), 3.55 (s, 2 H), 2.43 (q, J = 7.2 Hz, 2 H), 1.96 (s, 3 H), 0.89 (t, J = 7.2 Hz, 3 H).
16	1-(5-amino-2- fluorophenyl)propan- 2-one	H ₂ N	¹ H NMR (400MHz, CDCl ₃): δ 6.86 (t, 1 H), 6.53 (m, 1 H), 6.46 (m, 1 H), 3.36 (s, 2 H), 3.25 (s, 2 H), 2.13 (s, 3 H)

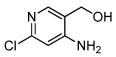
The following compounds are prepared essentially by the method of Preparation 11.

Synthesis of ethyl 6-chloro-4-(4-methoxybenzylamino)nicotinate.



5

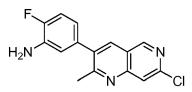
Stir a mixture of ethyl 4,6-dichloronicotinate (16 g, 73.1 mmol), (4methoxybenzyl)amine (10 g, 73.1 mmol), and TEA (15.2 g, 146 mmol) in DMSO (150 mL) at RT overnight. Add EtOAc, wash with water (2x), then brine (1x), dry the organics over MgSO₄ and concentrate to afford the title compound (21 g, 90%). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: δ 8.62 (s, 1 H), 8.39 (s, 1 H), 7.16 (d, J = 8.7 Hz, 2 H), 6.85-6.80 (m, 2 H), 6.49 (s, 1 H), 4.33-4.25 (m, 4 H), 3.77 (s, 3 H), 1.31 (t, J = 6.9 Hz, 3 H). 10


Preparation 18

Synthesis of ethyl 4-amino-6-chloronicotinate.

15 Heat a mixture of ethyl 6-chloro-4-(4-methoxybenzylamino)nicotinate (21 g, 65.6 mmol) and TFA (150 mL) at 50°C overnight. Cool the mixture to RT, concentrate to dryness, dissolve the residue in EtOAc, wash with satd. NaHCO₃ (2x), then brine (1x), dry over MgSO₄, concentrate and purify via silica gel chromatography to give the title compound (10 g, 76%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.49 (s, 1 H), 7.47 (s, 2 H), 20 6.76 (s, 1 H), 4.29 (q, J = 7.2 Hz, 2 H), 1.31 (t, J = 7.2 Hz, 3 H).

Synthesis of (4-amino-6-chloropyridin-3-yl)methanol.


- Treat a 0°C suspension of lithium aluminum hydride (5.7 g, 150 mmol) in THF 5 (150 mL), under N₂, drop-wise with a solution of ethyl 4-amino-6-chloronicotinate (15 g, 75 mmol) in THF (50 mL), allow to warm to RT and stir for 3 h. Quench the mixture with 10% NaOH (5.7 mL), then water (5.7 mL), filter to remove solids, add water to the filtrate and extract with EtOAc (3x). Wash the combined organics with brine, dry and concentrate to give the title compound (10 g, 84%). ¹H NMR (300MHz, DMSO- d_6): δ 7.79 (s, 1 H), 6.53 (s, 1 H), 6.17 (s, 2 H), 5.10 (t, J = 5.4 Hz, 1 H), 4.36 (d, J = 5.4 Hz, 2
- 10 7.79 (s, 1 H), 6.53 (s, 1 H), 6.17 (s, 2 H), 5.10 (t, J = 5.4 Hz, 1 H), 4.36 (d, J = 5.4 Hz, 2 H).

Preparation 20

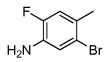
Synthesis of 4-amino-6-chloronicotinaldehyde.

Treat a solution of (4-amino-6-chloropyridin-3-yl)methanol (10 g, 63.3 mmol) in DCM (150 mL) with activated manganese dioxide (38 g, 443 mmol) and stir at RT overnight. Remove solids via filtration, concentrate the filtrate and purify by silica gel chromatography to afford the title compound (7.2 g, 73%). ¹H NMR (400 MHz, DMSO- d_6): δ 9.88 (s, 1 H), 8.44 (s, 1 H), 7.84 (s, 2 H), 6.73 (s, 1 H); MS (ESI) m/z: 157.0 (M+H⁺).

Synthesis of 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoroaniline.

5

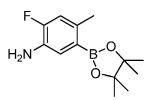
Heat a solution of 1-(3-amino-4-fluorophenyl)propan-2-one (0.34 g, 2.034 mmol), 4-amino-6-chloronicotinaldehyde (0.318 g, 2.034 mmol) and KOH (0.057 g, 1.017 mmol) in EtOH (12 mL) at 60°C for 1 h. Cool the mixture to RT, add brine and extract with EtOAc (3x). Dry the combined organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (353 mg, 60%). MS (ESI) m/z: 288.1 (M+H⁺).


10

The following compounds are prepared essentially by the method of Preparation 21.

Prep	Chemical Name	Structure	Physical Data
No.			
22	5-(7-chloro-2-methyl- 1,6-naphthyridin-3-yl)- 2,4-difluoroaniline		MS (ESI) m/z: 305.8 (M+H ⁺)
23	5-(7-chloro-2-ethyl- 1,6-naphthyridin-3-yl)- 2,4-difluoroaniline	F H ₂ N N CI	MS (ESI) m/z: 320.1 (M+H ⁺)
24	5-(7-chloro-2-ethyl- 1,6-naphthyridin-3-yl)- 2-fluoro-4- methylaniline		MS (ESI) m/z: 316.1 (M+H ⁺)

25	5-(7-chloro-2-ethyl- 1,6-naphthyridin-3-yl)- 2-fluoroaniline	H ₂ N CI	MS (ESI) m/z: 302.0 (M+H ⁺)
26	3-(7-chloro-2-methyl- 1,6-naphthyridin-3-yl)- 4-fluorobenzenamine	H ₂ N F CI	¹ H NMR (400 MHz, CDCl ₃): δ 8.96 (s, 1 H), 8.01 (s, 1 H), 7.89 (s, 1 H), 6.93 (dd, J = 8.8 Hz, 1 H), 6.72 (m, 1 H), 6.52 (m, 1 H), 2.59 (s, 3 H)


Synthesis of 5-bromo-2-fluoro-4-methylaniline

Combine 1-bromo-4-fluoro-2-methylbenzene (30.0 g, 159 mmol) in concentrated sulfuric acid (100 mL), cool to about -5°C, and treat drop wise with nitric acid (11.00 mL, 174 mmol) over 20 minutes. Allow reaction mixture to warm to RT and stir for 30 min. Pour onto crushed ice with stirring and partition with tert-butyl methyl ether (MTBE) (200 mL). Separate the aqueous layer and extract with MTBE (2 x 50 mL). Combine
organic layers, dry and concentrate under reduced pressure to provide 1-bromo-4-fluoro-2-methyl-5-nitrobenzene as an orange-colored viscous oil (39.0 g).

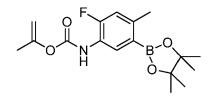
Combine crude 1-bromo-4-fluoro-2-methyl-5-nitrobenzene (32.4 g, 138 mmol), ethanol (100 mL) and Raney Nickel (1.00 g, 17.04 mmol) in a shaker flask. Charge the flask with hydrogen (275 kPa) and agitate until the absorption of hydrogen ceases. Depressurize the reaction vessel, remove the catalyst by filtration, and evaporate the filtrate to dryness. Add MTBE, then filter again and evaporate the filtrate. Stir residue in hexanes. Collect the solids by filtration, wash with cold hexanes and dry in vacuo to provide the title compound (17.8 g, 63%) as a dark solid. MS (m/z): 204.0 (M+ H⁺)/206.0 (M+ H⁺).

Synthesis of 2-fluoro-4-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline

Combine 5-bromo-2-fluoro-4-methylaniline (3.1 g, 15.2 mmol), bis(pinacolato)diboron (4.24 g, 16.7 mmol), and potassium acetate (4.47 g, 45.6 mmol) in dioxane (40 mL) and sparge with argon. Add [1,1'-bis(diphenylphosphino)ferrocene]-dichloropalladium(II)-dichloromethane complex (0.620 g, 0.760 mmol), sparge again with argon and heat at 100°C overnight. Filter the reaction mixture and concentrate in vacuo. Purify by silica gel chromatography (EtOAc/hexanes) to give the title compound (3.24 g, 85%). MS (m/z): 252.1 (M+ H⁺).

The following compounds are prepared essentially by the method of Preparation 28.

Prep No.	Chemical Name	Structure	Physical data MS(m/z):
29	2,4-difluoro-5-(4,4,5,5- tetramethyl-1,3,2- dioxaborolan-2-yl)aniline	F H ₂ N F B O	256.2 (M+ H ⁺)
30	2-fluoro-5-(4,4,5,5- tetramethyl-1,3,2- dioxaborolan-2-yl)aniline	F H ₂ N B O	238.1 (M+ H ⁺)


15

Preparation 31

Synthesis of prop-1-en-2-yl 2-fluoro-4-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylcarbamate

MS(m/z): 322.1

 $(M+H^+)$

Combine 2-fluoro-4-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)aniline (5.0 g, 19.91 mmol) and isopropenyl chloroformate (2.40 mL, 21.90 mmol) in EtOAc (60 mL) and saturated NaHCO₃ (60 mL) and stir at RT for 6 h. Separate the layers, extract the aqueous layer with EtOAc (2x), wash the combined organics with brine, dry over Na₂SO₄ and concentrate to obtain the title compound. Use for the next

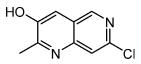
Prop-1-en-2-yl (2-fluoro-5-

(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-

yl)phenyl)carbamate

5


reaction	reaction without further purification (assuming 100% yield). MS (m/z): 336.2 (M+ H^+).					
The fol	lowing compounds are prepared esse	entially by the method of I	Preparation 31.			
Prep No.	Chemical Name	Structure	Physical data			
32	Prop-1-en-2-yl (2,4-difluoro-5- (4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2- yl)phenyl)carbamate		MS(m/z): 340.1 (M+ H ⁺)			

10

33

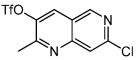
Preparation 34

Synthesis of 7-chloro-2-methyl-[1,6]naphthyridin-3-ol.

WO 2013/134298

Treat a mixture of 4-amino-6-chloro-pyridine-3-carbaldehyde (39 g, 0.25 mol) and 2-hydroxy acetone (28 g, 0.375 mol) in THF (400 mL) with KOH (52.5 g, 0.75 mol), stir at RT for 1 h, add water and acidify with 1N HCl. Collect the resulting solids by filtration, wash with water (3x), then EtOAc (2x) and dry to afford the title compound (45 g, 93%) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 9.00 (s, 1 H), 7.77 (s, 1 H), 7.53 (s, 1 H), 2.54 (s, 3 H).

5

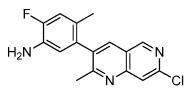

The following compound is prepared essentially by the method of Preparation 34.

Prep	Chemical Name	Structure	Physical Data
No.			
35	7-chloro-2-ethyl-1,6- naphthyridin-3-ol	HO N N CI	MS(ESI) m/z: 209.1 (M+H ⁺)

10

Preparation 36

Synthesis of 7-chloro-2-methyl-1,6-naphthyridin-3-yl trifluoromethanesulfonate.


Treat a 0°C solution of 7-chloro-2-methyl-[1,6]naphthyridin-3-ol (30 g, 154.6 mmol) in DCM (300 mL), under Ar, with pyridine (24.4 g, 309.2 mmol) and 15 trifluoromethanesulfonic anhydride [Tf₂O] (65.4 g, 232 mmol), stir for 2 h, then wash with water. Extract the aqueous layer with DCM (1x), wash the combined organics with brine, dry over Na₂SO₄, concentrate and purify by silica gel chromatography to give the title compound (40.2 g, 80%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.10 (d, J = 0.8 Hz, 1 H), 8.15 (s, 1 H), 7.96 (t, J = 0.8 Hz, 1 H), 2.83 (s, 3 H).

Prep	Chemical Name	Structure	Physical Data
No.			
37	7-chloro-2-ethyl-1,6-	TfO	MS(ESI) m/z:
	naphthyridin-3-yl		341.0 (M+H ⁺)
	trifluoromethanesulfonate		

The following compound is prepared essentially by the method of Preparation 36.

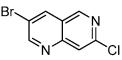
Preparation 38

Synthesis of 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylaniline.

5

10

Sparge a mixture of 7-chloro-2-methyl-1,6-naphthyridin-3-yl trifluoromethanesulfonate (2.250 g, 6.89 mmol) and 2-fluoro-4-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (1.729 g, 6.89 mmol) in dioxane (32 mL) with argon, add a solution of K₂CO₃ (2.86 g, 20.66 mmol) in H₂O (16 mL) followed by Pd(PPh₃)₄ (252 mg, 0.689 mmol) and heat at 60°C for 1 h. Cool to RT, add EtOAc, wash successively with H₂O, satd. NaHCO₃, then brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (1.277 g, 61%) as a solid. ¹H NMR (400 MHz, DMSO-d₆): δ 9.21 (d, J = 0.8 Hz, 1 H), 8.28 (s, 1 H), 8.00 (s, 1 H), 7.00 (d, J = 12.4 Hz, 1 H), 6.59 (d, J = 9.3 Hz, 1 H),


15 5.08 (s, 2 H), 2.42 (s, 3 H), 1.85 (s, 3 H); MS (ESI) m/z: 302.1(M+H⁺).

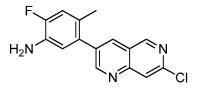
Prep	Chemical Name	Structure	Physical Data
No.			
39	3-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-4- methylaniline	H ₂ N N CI	MS (ESI) m/z: 284.1 (M+H ⁺)
40	3-(7-chloro-2-ethyl-1,6- naphthyridin-3-yl)-4- fluoroaniline	H ₂ N F N CI	MS(ESI) m/z: 302.1 (M+H ⁺)

The following compounds are prepared essentially by the method of Preparation 38.

Preparation 41

Synthesis of 3-bromo-7-chloro-1,6-naphthyridine.

5


10

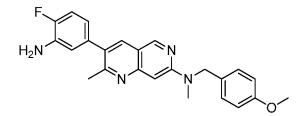
Heat a mixture of 4-amino-6-chloronicotinaldehyde (2.00 g, 12.77 mmol), 2bromo-1,1-dimethoxyethane (6.48 g, 38.3 mmol) and ytterbium(III) trifluoromethanesulfonate (1.981 g, 3.19 mmol) in MeCN (25 mL) at 80°C overnight. Cool to RT, dilute with EtOAc, collect the solids via filtration, rinse with EtOAc and dry. Wash the filtrate with H₂O, then brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex). Combine the two solids to afford the title compound (1.67 g, 53%) as an off-white solid. MS(ESI) m/z: 244.9 (M+H⁺).

Preparation 42

15

Synthesis of 5-(7-chloro-1,6-naphthyridin-3-yl)-2-fluoro-4-methylaniline.

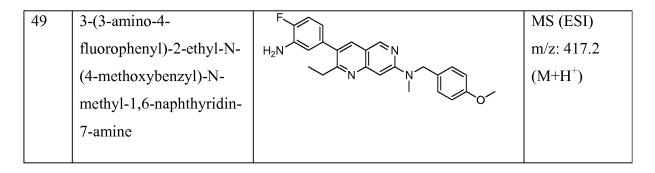
10

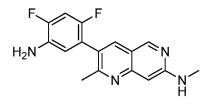

PCT/US2013/029176

Sparge a solution of 3-bromo-7-chloro-1,6-naphthyridine (0.5 g, 2.053 mmol) and 2-fluoro-4-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (0.516 g, 2.053 mmol) in dioxane (15 mL) with Ar, add a solution of K_2CO_3 (0.568 g, 4.11 mmol) in H_2O (3 mL), followed by Pd(PPh₃)₄ (0.237 g, 0.205 mmol), heat at 75°C for 8 h, then cool to

RT. Add H₂O, extract with EtOAc (2x), wash the combined organics with brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (470 mg, 80%) as an off-white solid. MS(ESI) m/z: 288.1 (M+H⁺).

Preparation 43


Synthesis of 3-(3-amino-4-fluorophenyl)-N-(4-methoxybenzyl)-N,2-dimethyl-1,6naphthyridin-7-amine.


Treat a solution of 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoroaniline
(0.353 g, 1.227 mmol) and 4-methoxy-N-methylbenzylamine (0.371 g, 2.454 mmol) in
NMP (6 mL) in a sealed tube with N,N-diispropylethylamine (DIEA) (0.429 mL, 2.454 mmol), sparge with argon and heat at 170°C overnight. Add additional 4-methoxy-N-methylbenzylamine (0.371 g, 2.454 mmol) and heat at 185°C for 24 h. Add more 4-methoxy-N-methylbenzylamine (0.15 g, 1 mmol) and heat the mixture overnight at 185°C. Cool to RT, dilute with EtOAc and wash with satd. NaHCO₃, water, and then brine. Dry the organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (334 mg, 68%). ¹H NMR (400 MHz, DMSO-d₆): δ 8.95 (s, 1 H), 7.95 (s, 1 H), 7.15 (d, J = 8.4 Hz, 2 H), 7.05 (dd, J = 11.5, 8.2 Hz, 1 H), 6.85 (m, 2 H), 6.78 (dd, J = 8.8, 2.3 Hz, 1 H), 6.71 (s, 1 H), 6.54
(ddd, J = 8.2, 4.4, 2.2 Hz, 1 H), 5.24 (s, 2 H), 4.85 (s, 2 H), 3.69 (s, 3 H), 3.08 (s, 3 H),

Prep	Chemical Name	Structure	Physical Data
No.			
44	3-(5-amino-2,4- difluorophenyl)-N-(4- methoxybenzyl)-N,2- dimethyl-1,6- naphthyridin-7-amine 3-(5-amino-2,4- difluorophenyl)-2-ethyl- N-(4-methoxybenzyl)-N- methyl-1,6-naphthyridin- 7-amine	F + F + F + F + F + F + F + F + F + F +	MS (ESI) m/z: 421.2 (M+H ⁺) MS (ESI) m/z: 435.2 (M+H ⁺)
46	3-(5-amino-4-fluoro-2- methylphenyl)-2-ethyl-N- (4-methoxybenzyl)-N- methyl-1,6-naphthyridin- 7-amine		MS (ESI) m/z: 431.2 (M+H ⁺)
47	3-(5-amino-4-fluoro-2- methylphenyl)-N-(4- methoxybenzyl)-N,2- dimethyl-1,6- naphthyridin-7-amine	F H ₂ N N N N N N N O	MS (ESI) m/z: 417.2 (M+H ⁺)
48	3-(5-amino-2- methylphenyl)-N-(4- methoxybenzyl)-N,2- dimethyl-1,6- naphthyridin-7-amine	H ₂ N N N N N N N N N N N N N N N N N N N	MS (ESI) m/z: 399.2 (M+H ⁺)

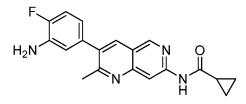
The following compounds are prepared essentially by the method of Preparation 43.

Synthesis of 3-(5-amino-2,4-difluorophenyl)-*N*,2-dimethyl-1,6-naphthyridin-7-amine.

5

10

Heat a solution of 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2,4difluorobenzenamine (0.55 g, 1.799 mmol) in methylamine (33% in EtOH, 10 mL, 1.799 mmol) at 120°C with microwave irradiation for 12 h. Add additional methylamine (33% in EtOH, 2 mL), heat the mixture at 120°C for 12 h, add more methylamine (33% in EtOH, 2 mL) and irradiate at 120°C for 15 h. Dilute the mixture with EtOAc, wash with satd. NaHCO₃ (2x), dry and evaporated to yield the title compound (0.53 g, 98%). MS(ESI) m/z: 301.1 (M+H⁺).


The following compounds are prepared essentially by the method of Preparation 50.

Prep	Chemical Name	Structure	Physical Data
No.			
51	3-(5-amino-2-	F	MS(ESI) m/z:
	fluorophenyl)-N,2-		283.2 (M+H ⁺)
	dimethyl-1,6-naphthyridin-		
	7-amine	Ĥ	

52	3-(5-amino-4-fluoro-2- methylphenyl)-N,2- dimethyl-1,6-naphthyridin- 7-amine	F H ₂ N N N H	MS(ESI) m/z: 297.0 (M+H ⁺)
53	3-(5-amino-4-fluoro-2- methylphenyl)-N-methyl- 1,6-naphthyridin-7-amine	F H ₂ N N N H	MS(ESI) m/z: 283.1 (M+H ⁺)
54	2-((3-(5-amino-4-fluoro-2- methylphenyl)-2-methyl- 1,6-naphthyridin-7- yl)amino)ethanol	F H ₂ N N N H OH	MS(ESI) m/z: 327.2 (M+H ⁺)
55	2-((3-(5-amino-2,4- difluorophenyl)-2-methyl- 1,6-naphthyridin-7- yl)amino)ethan-1-ol	F H ₂ N N N H OH	MS(ESI) m/z: 331.1 (M+H ⁺)

Synthesis of N-(3-(3-amino-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-

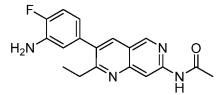
yl)cyclopropanecarboxamide

5

10

Sparge a solution of 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoroaniline (0.5 g, 1.738 mmol) in dioxane (15 mL) with argon, add cyclopropanecarboxamide (0.739 g, 8.69 mmol), XantPhos (0.101 g, 0.174 mmol), Cs_2CO_3 (1.699 g, 5.21 mmol) and $Pd_2(dba)_3$ (0.080 g, 0.087 mmol) and heat at 80°C overnight. Cool to RT, add EtOAc and MeOH, remove the solids via filtration through diatomaceous earth, rinse well with EtOAc and H₂O and separate the layers of the filtrate. Wash the organic layer with brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography

(EtOAc/Hex) to afford the title compound (200 mg, 34%) as a white amorphous solid. ¹H NMR (400 MHz, DMSO-d₆): δ 11.01 (s, 1 H), 9.13 (d, J = 0.9 Hz, 1 H), 8.44 (m, 1 H), 8.17 (s, 1 H), 7.08 (m, 1 H), 6.82 (dd, J = 8.7, 2.2 Hz, 1 H), 6.59 (m, 1 H), 5.28 (s, 2 H), 2.56 (s, 3 H), 2.02 (m, 1 H), 0.88-0.81 (m, 4 H); MS(ESI) m/z: 337.1 (M+H⁺).


5

The following compounds are prepared essentially by the method of Preparation 56.

Prep	Chemical Name	Structure	Physical Data
No.			
57	N-(3-(5-amino-2- fluorophenyl)-2-methyl-1,6- naphthyridin-7-yl)acetamide	H ₂ N F N N H	MS (ESI) m/z: 311.1 (M+H ⁺)
58	N-(3-(3-amino-4- fluorophenyl)-2-methyl-1,6- naphthyridin-7- yl)isobutyramide	F_{H_2N} N_{N} N_{H} N_{H} N_{H}	MS(ESI) m/z: 339.2 (M+H ⁺)
59	N-(3-(5-amino-4-fluoro-2- methylphenyl)-2-methyl-1,6- naphthyridin-7- yl)cyclopropanecarboxamide	F H ₂ N N N H V	MS(ESI) m/z: 351.2 (M+H ⁺)

Preparation 60

Synthesis of N-(3-(3-amino-4-fluorophenyl)-2-ethyl-1,6-naphthyridin-7-yl)acetamide

10

Sparge a solution of 5-(7-chloro-2-ethyl-1,6-naphthyridin-3-yl)-2-fluoroaniline (0.63 g, 2.088 mmol) in dioxane (20 mL) with argon, add acetamide (0.987 g, 16.70

MS(ESI) m/z:

 $325.1 (M+H^+)$

mmol), K_3PO_4 (1.773 g, 8.35 mmol), $Pd_2(dba)_3$ (0.096 g, 0.104 mmol) and BippyPhos (0.106 g, 0.209 mmol) and heat at 80°C for 16 h. Cool to RT, remove the solids via filtration through diatomaceous earth, rinse well with EtOAc and H₂O, and separate the layers of the filtrate. Extract the aqueous layer with EtOAc (1x), wash the combined

5 organics with brine, dry over Na_2SO_4 , concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (250 mg, 37%) as an offwhite solid. MS(ESI) m/z :325.1 (M+H⁺).

Prep	Chemical Name	Structure	Physical Data
No.			
(1	2 (5 : 0 4		
61	3-(5-amino-2,4-		MS(ESI) m/z:
	difluorophenyl)-2-methyl-		$378.1 (M+H^{+})$

N-(6-methylpyridin-3-yl)-

1,6-naphthyridin-7-amine

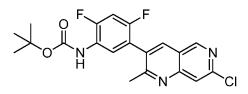
fluorophenyl)-2-ethyl-1,6-

N-(3-(5-amino-2-

naphthyridin-7-

yl)acetamide

The following compounds are prepared essentially by the method of Preparation 60.


10

62

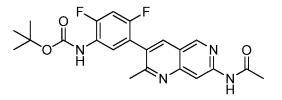
Preparation 63

 H_2N

Synthesis of tert-butyl (5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2,4difluorophenyl)carbamate.

15

Heat a solution of 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluoroaniline (0.5 g, 1.636 mmol) and di-tert-butyl dicarbonate [Boc₂O] (0.759 mL, 3.27 mmol) in toluene (10 mL) at 110°C for 16 h, add additional Boc₂O (0.36 g, 1.65 mmol) and heat for


an additional 40 h. Cool to RT, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (750 mg, 113%) as a viscous oil. MS (ESI) m/z: 406.1 (M+H⁺).

5 The following compound is prepared essentially by the method of Preparation 63.

Prep	Chemical Name	Structure	Physical Data
No.			
	tert-butyl (5-(7-chloro-2- methyl-1,6-naphthyridin-3- yl)-2-fluoro-4- methylphenyl)carbamate		MS (ESI) m/z: 402.1 (M+H ⁺).

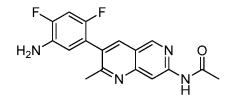
Preparation 65

Synthesis of tert-butyl (5-(7-acetamido-2-methyl-1,6-naphthyridin-3-yl)-2,4difluorophenyl)carbamate.

10 Sparge a mixture of tert-butyl (5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2,4difluorophenyl)carbamate (0.664 g, 1.636 mmol), XantPhos (0.189 g, 0.327 mmol), Cs₂CO₃ (1.066 g, 3.27 mmol) and acetamide (0.483 g, 8.18 mmol) in dioxane (16 mL) with Ar, add Pd₂(dba)₃ (0.150 g, 0.164 mmol) and heat at 100°C overnight. Cool to RT, remove the solids via filtration through diatomaceous earth, rinse well with THF,

concentrate the filtrate to dryness and purify via silica gel chromatography (EtOAc/Hex)
 to afford the title compound (630 mg, 90%) as a glass. MS (ESI) m/z: 429.2 (M+H⁺).

5


Prep	Chemical Name	Structure	Physical
No.			Data
66	tert-butyl (5-(7-(tert-		MS (ESI)
	butoxycarbonylamino)-2-		m/z: 483.2
	methyl-1,6-naphthyridin-3-	H H	$(M+H^+)$.
	yl)-2-fluoro-4-		
	methylphenyl)carbamate		

The following compound is prepared essentially by the method of Preparation 65.

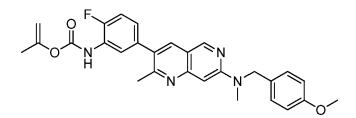
Preparation 67

Synthesis of N-(3-(5-amino-2,4-difluorophenyl)-2-methyl-1,6-naphthyridin-7-

yl)acetamide.

Add TFA (5 mL, 64.9 mmol) to a solution of tert-butyl (5-(7-acetamido-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)carbamate (0.63 g, 1.470 mmol) in DCM (5 mL), stir at RT for 16 h, then concentrate to dryness. Neutralize with satd. NaHCO₃,
extract with EtOAc/THF (1x), wash the organic layer with brine, dry over MgSO₄ and concentrate to dryness. Triturate with THF/Hex, collect the solids via filtration and dry to afford the title compound (391 mg, 81%) as a tan solid. ¹H NMR (400 MHz, DMSO-d₆): δ 10.76 (s, 1 H), 9.13 (d, J = 0.84 Hz, 1 H), 8.49 (s, 1 H), 8.25 (s, 1 H), 7.21 (dd, J = 11.28, 9.65 Hz, 1 H), 6.76 (dd, J = 9.87, 7.72 Hz, 1 H), 5.18 (s, 2 H), 2.49 (s, 3 H), 2.15

15 (s, 3 H); MS (ESI) m/z: 329.1 (M+H⁺).


WO 2013/134298

Prep	Chemical Name	Structure	Physical Data
No.			
68	3-(5-amino-4-fluoro-2-	F	MS (ESI) m/z:
	methylphenyl)-2-methyl-1,6-	H ₂ N N	283.1 (M+H ⁺)
	naphthyridin-7-amine	N NH2	

The following compound is prepared essentially by the method of Preparation 67.

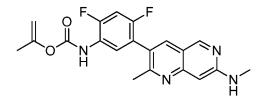
Preparation 69

5 Synthesis of prop-1-en-2-yl (2-fluoro-5-(7-((4-methoxybenzyl)(methyl)amino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)carbamate.

Treat a solution of 3-(3-amino-4-fluorophenyl)-N-(4-methoxybenzyl)-N,2-10 dimethyl-1,6-naphthyridin-7-amine (0.334 g, 0.830 mmol) in EtOAc (10 mL) with satd. NaHCO₃ (10 mL), add isopropenyl chloroformate (0.100 mL, 0.913 mmol) and stir at RT for 2 h. Separate the layers, extract the aqueous layer with EtOAc (2x), dry the combined organics over MgSO₄ and concentrate to dryness to afford the title compound (398 mg, 99%). MS (ESI) m/z: 487.2 (M+H⁺).

Prep	Chemical Name	Structure	Physical
No.			Data
70	prop-1-en-2-yl (2,4-		MS (ESI)
	difluoro-5-(7-((4-		m/z: 505.2
	methoxybenzyl)(methyl)a	H M N N N N N N N N N N N N N N N N N N	$(M+H^+)$
	mino)-2-methyl-1,6-		
	naphthyridin-3-		
	yl)phenyl)carbamate		
71	prop-1-en-2-yl (5-(2-		MS (ESI)
	ethyl-7-((4-		m/z: 519.2
	methoxybenzyl)(methyl)a		$(M+H^+)$
	mino)-1,6-naphthyridin-3-		
	yl)-2,4-		
	difluorophenyl)carbamate		
72	prop-1-en-2-yl (5-(2-		MS (ESI)
	ethyl-7-((4-		m/z: 515.3
	methoxybenzyl)(methyl)a		$(M+H^+)$
	mino)-1,6-naphthyridin-3-		
	yl)-2-fluoro-4-		
	methylphenyl)carbamate		
73	prop-1-en-2-yl (2-fluoro-		MS (ESI)
	5-(7-((4-		m/z: 501.2
	methoxybenzyl)(methyl)a		$(M+H^+)$
	mino)-2-methyl-1,6-		
	naphthyridin-3-yl)-4-		
	methylphenyl)carbamate		
74	prop-1-en-2-yl (3-(7-((4-		MS (ESI)
	methoxybenzyl)(methyl)a		m/z: 483.3
	mino)-2-methyl-1,6-		$(M+H^+)$
	naphthyridin-3-yl)-4-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

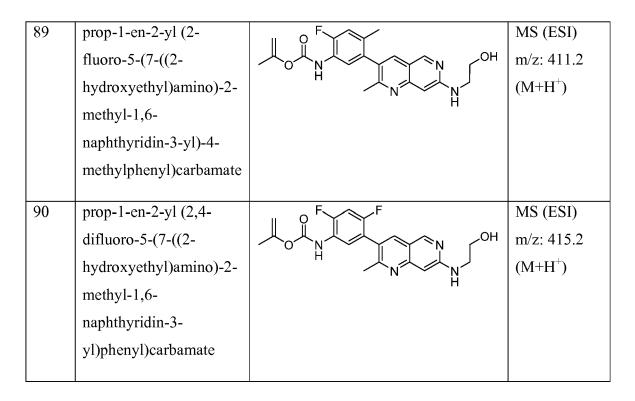
The following compounds are prepared essentially by the method of Preparation 69.

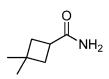

	methylphenyl)carbamate		
75	prop-1-en-2-yl (5-(2- ethyl-7-((4- methoxybenzyl)(methyl)a mino)-1,6-naphthyridin-3- yl)-2- fluorophenyl)carbamate		MS (ESI) m/z: 501.2 (M+H ⁺)
76	prop-1-en-2-yl (4-fluoro- 3-(2-methyl-7- (methylamino)-1,6- naphthyridin-3- yl)phenyl)carbamate	C C C C C C C C C C C C C C C C C C C	MS (ESI) m/z: 367.2 (M+H ⁺)
77	prop-1-en-2-yl (3-(7- acetamido-2-methyl-1,6- naphthyridin-3-yl)-4- fluorophenyl)carbamate		MS (ESI) m/z: 395.1 (M+H ⁺)
78	prop-1-en-2-yl (5-(7- acetamido-2-ethyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)carbamate		MS(ESI) m/z: 409.2 (M+H ⁺)
79	prop-1-en-2-yl (3-(7- acetamido-2-ethyl-1,6- naphthyridin-3-yl)-4- fluorophenyl)carbamate	F N N H N H	MS(ESI) m/z: 409.2 (M+H ⁺)
80	prop-1-en-2-yl (2-fluoro- 5-(7-isobutyramido-2- methyl-1,6-naphthyridin- 3-yl)phenyl)carbamate		MS(ESI) m/z: 423.2 (M+H ⁺)

81	prop-1-en-2-yl (5-(7- (cyclopropanecarboxamid o)-2-methyl-1,6- naphthyridin-3-yl)-2- fluoro-4- methylphenyl)carbamate	MS(ESI) m/z: 435.2 (M+H ⁺)
82	prop-1-en-2-yl (5-(7- (cyclopropanecarboxamid o)-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)carbamate	MS(ESI) m/z: 421.2 (M+H ⁺)
83	prop-1-en-2-yl (5-(7- acetamido-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)carbamate	MS (ESI) m/z: 413.2 (M+H ⁺)

Synthesis of prop-1-en-2-yl 2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenylcarbamate.

5


10


Treat a 0°C solution of 3-(5-amino-2,4-difluorophenyl)-*N*,2-dimethyl-1,6naphthyridin-7-amine (1.45 g, 4.83 mmol) in pyridine (30 mL) drop-wise with isopropenyl chloroformate (0.528 mL, 4.83 mmol), warm to RT and stir overnight. Add EtOAc, wash with satd. NaHCO₃ (2x), dry, concentrate and purify by silica gel chromatography (EtOAc/TEA pre-wash, EtOAc/Hex) to afford the title compound (1.449 g, 78%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.77 (s, 1H), 8.85 (s, 1 H), 8.03 (s, 1 H), 7.67-7.63 (m, 1 H), 7.49 (t, 1 H), 6.87-6.84 (m, 1 H), 6.52 (s, 1 H), 4.73 (s, 1H), 4.70 (s, 1 H), 2.82 (d, 3 H), 2.38 (s, 3 H), 1.91 (s, 3 H); MS (ESI) m/z: 385.2 (M+H⁺).

Prep	Chemical Name	Structure	Physical
No.			Data
95		E o c	MC(ECI)
85	prop-1-en-2-yl (2-		MS(ESI)
	fluoro-4-methyl-5-(2-		m/z: 381.1
	methyl-7-		$(M+H^+)$
	(methylamino)-1,6-		
	naphthyridin-3-		
	yl)phenyl)carbamate		
86	prop-1-en-2-yl (2-		MS(ESI)
	fluoro-4-methyl-5-(7-		m/z: 367.1
	(methylamino)-1,6-	H H	$(M+H^+)$
	naphthyridin-3-	N V N H	
	yl)phenyl)carbamate		
87	prop-1-en-2-yl (2,4-	F F	MS(ESI)
	difluoro-5-(2-methyl-7-		m/z: 462.2
	((6-methylpyridin-3-		$(M+H^+)$
	yl)amino)-1,6-		
	naphthyridin-3-		
	yl)phenyl)carbamate		
88	prop-1-en-2-yl (5-(7-	- F. 今 Z	MS (ESI)
	amino-2-methyl-1,6-		m/z: 367.1
	naphthyridin-3-yl)-2-		$(M+H^+)$
	fluoro-4-	✓ `N' ``NH₂	
	methylphenyl)carbamate		

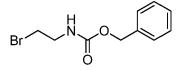
The following compounds are prepared essentially by the method of Preparation 84.

Synthesis of 3,3-dimethylcyclobutanecarboxamide.

5

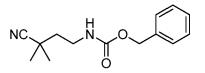
Treat a solution of 3,3-dimethylcyclobutylcarboxylic acid (0.500 g, 3.90 mmol) and oxalyl chloride (0.512 mL, 5.85 mmol) in DCM (30 mL) with catalytic DMF (1 drop), stir at RT for 4 h, concentrate to dryness, add additional DCM and concentrate to dryness again. Dissolve the residue in THF (10 mL), add drop-wise to a solution of NH₄OH (2 mL, 51.4 mmol) in THF (20 mL), and stir at RT overnight. Extract with EtOAc (2x), wash the combined organics with brine, dry over MgSO₄ and concentrate to 10 dryness to afford the title compound (440 mg, 89%) as a white solid. ¹H NMR (400 MHz, DMSO-d₆): δ 7.07 (s, 1 H); 6.63 (s, 1 H); 2.86 (m, 1 H); 1.85 (m, 2 H); 1.74 (m, 2

H); 1.10 (s, 3 H); 1.00 (s, 3 H); MS(ESI) m/z: 128.2 (M+H⁺).


Synthesis of (3,3-dimethylcyclobutyl)methanamine hydrochloride

Add a solution 3,3-dimethylcyclobutanecarboxamide (0.438 g, 3.44 mmol) in
5 THF (20 mL) to borane (1.0M in THF, 35 mL, 35.0 mmol) and heat to 65°C overnight. Cool to RT, quench with the careful addition of MeOH (35 mL) and concentrate to dryness. Dissolve the residue in MeOH (35 mL), treat slowly with 3M HCl (35 mL) and heat at 65°C overnight. Cool to RT, concentrate under high vacuum to near-dryness and co-evaporate with IPA (4x) to afford a white solid. Triturate the solid with EtOAc, collect via filtration, rinse with a small amount of EtOAc and dry to afford the title compound (317 mg, 61%) as a white solid. ¹H NMR (400 MHz, DMSO-d₆): δ 7.88 (s, 2 H); 2.77 (d, J = 7.5 Hz, 2 H); 2.43 (m, 1 H); 1.79 (m, 2 H); 1.51 (m, 2 H); 1.09 (s, 3 H);

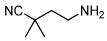
1.02 (s, 3 H); MS(ESI) m/z: 114.2 (M+H⁺).


Preparation 93

Synthesis of benzyl (2-bromoethyl)carbamate

Treat a 0 °C solution of 2-bromoethylamine hydrobromide (50 g, 0.246 mol) in dioxane (500 mL) with aqueous NaOH (1 M, 492 mL, 0.492 mol), add benzyl chloroformate (21.6 g, 0.127 mol) drop-wise, warm to RT and stir overnight. Pour the mixture into H₂O, extract with EtOAc (3×), wash the combined organics with brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Petroleum ether) to afford the title compound (60 g, 95%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.33 (m, 5 H), 5.12 (s, 2 H), 3.61 (t, *J* = 5.6 Hz, 2 H), 3.47 (t, *J* = 5.6 Hz, 2 H).

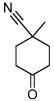
Synthesis of benzyl (3-cyano-3-methylbutyl)carbamate


Treat a -78 °C solution of diisopropylamine (35 g, 0.346 mol) in THF (300 mL),
under N₂, drop-wise with a solution of n-butyllithium (2.5 M, 127 mL, 0.317 mol), warm to -30 °C for 0.5 h, re-cool to -78°C and treat drop-wise with a solution of isobutyronitrile (19.9 g, 0.288 mol) in THF (100 mL). Stir the mixture at -78°C for 0.5 h, treat with a solution of benzyl (2-bromoethyl)carbamate (74 g, 0.288 mol) in THF (100 mL), stir at -78°C for 1 h, then warm to RT and stir overnight. Treat the mixture with H₂O, separate

10 the layers, extract the aqueous layer with EtOAc, wash the combined organics with brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Petroleum ether) to afford the title compound (15 g, 21 % yield). MS (m/z): 247.2 (M+1).

15

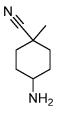
Preparation 95


Synthesis of 4-amino-2,2-dimethylbutanenitrile

Treat a solution of benzyl (3-cyano-3-methylbutyl)carbamate (2.50 g, 10.15 20 mmol) in THF (75 mL) with 10% Pd/C (1.080 g) and stir at RT under a hydrogen balloon for 2 h. Filter the mixture through diatomaceous earth, rinse well with THF and concentrate the filtrate to dryness to afford the title compound (assume 100% yield). MS (m/z): 113.2 (M+1).

Preparation 96

Synthesis of 8-methyl-1,4-dioxaspiro[4.5]decane-8-carbonitrile.



Treat a 0°C solution of 1,4-dioxa-spiro[4.5]decane-8-carbonitrile (1 g, 5.98 mmol) in THF (12 mL) drop-wise with lithium bis(trimethylsilyl)amide (1M, 6.88 mL, 6.88 mmol), stir at 0°C for 1 h, add iodomethane (0.374 mL, 5.98 mmol) drop-wise and stir at 0°C. Add satd. NH₄Cl, then brine, extract with EtOAc (2x), dry the combined organics 5 MgSO₄ and concentrate to dryness to afford crude 8-methyl-1,4over dioxaspiro[4.5]decane-8-carbonitrile (1.33 g, 123%). Add THF (15 mL) and HCl (3M, 15 mL, 45 mmol), heat the mixture at 50°C for 5 h, cool to RT, make basic with 3M NaOH, extract with DCM (3x), dry the combined organics over Na₂SO₄ and concentrate to dryness to afford the title compound (700 mg, 85%, 2 steps). ¹H NMR (400 MHz, 10 DMSO-d₆): δ 2.48-2.41 (m, 2 H), 2.30-2.23 (m, 2 H), 2.19-2.12 (m, 2 H), 1.84 (td, J = 13.3, 4.5 Hz, 2 H), 1.41 (s, 3 H); MS(ESI) m/z: 138.1 (M+H⁺).

Preparation 97

15

Synthesis of cis/trans 4-amino-1-methylcyclohexanecarbonitrile

Stir a solution of 1-methyl-4-oxocyclohexanecarbonitrile (0.7 g, 5.10 mmol) and NH₄OAc (3.93 g, 51.0 mmol) in MeOH (10 mL) at RT for 4 h, add sodium cyanoborohydride (0.385 g, 6.12 mmol) and stir at RT overnight. Concentrate the mixture to dryness, dissolve the residue in 2N HCl, stir for 0.5 h and wash with EtOAc. Neutralize the aqueous layer with 2N NaOH, extract with DCM (3x), dry the combined organics over MgSO₄ and concentrate to dryness to afford the title compound as a cis/trans mixture (580 mg, 82%). MS(ESI) m/z: 139.2 (M+H⁺).

PCT/US2013/029176

Preparation 98

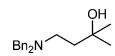
Synthesis of ethyl 3-(dibenzylamino)propanoate

Bn₂N COOEt

5

10

15

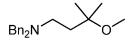

20

25

Heat a solution of ethyl 3-aminopropanoate hydrochloride (80.0 g, 0.52 mol), benzylbromide (186.7 g, 1.1 mol) and K₂CO₃ (179.4 g, 1.3 mol) in acetonitrile (1 L) at 40 °C overnight. Concentrate the mixture to dryness, treat with water, extract with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (Pet Ether/EtOAc, 50:1) to afford the title compound (150 g, 97 % yield). ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.21 (m, 10 H), 4.09 (q, *J* = 7.2 Hz, 2 H), 3.58 (s, 4 H), 2.82 (t, *J* = 7.2 Hz, 2 H), 2.50 (t, *J* = 7.2 Hz, 2 H), 1.21 (t, *J* = 7.2 Hz, 3 H).

Preparation 99

Synthesis of 4-(dibenzylamino)-2-methylbutan-2-ol

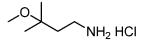


Cool a solution of ethyl 3-(dibenzylamino)propanoate (150 g, 0.51 mol) in THF (1 L) to 0°C. Add methylmagnesium bromide (505 mL, 1.51 mol) drop-wise over 1 h, then heat at 70°C under N₂ overnight. Re-cool the mixture to 0°C, add saturated NH₄OH drop-wise, extract the mixture with EtOAc (3x), wash the combined organics with brine,

dry over Na_2SO_4 , concentrate to dryness and purify via silica gel chromatography to afford the title compound (140 g, 98%). MS (m/z): 284.2 (M+1).

Preparation 100

Synthesis of N,N-dibenzyl-3-methoxy-3-methylbutan-1-amine

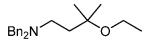

Add potassium hydride (30%, 2.6 g, 19.4 mmol) portion wise under N₂ to a 0°C solution of 4-(dibenzylamino)-2-methylbutan-2-ol (5 g, 17.6 mmol) in THF (50 mL). Stir the mixture at 0 °C for 0.5 h, treat drop-wise with methyl iodide [MeI] (2.76 g, 19.4 mmol), allow the mixture to warm to RT and stir for 3 h. Re-cool the mixture to 0°C, treat with saturated NH₄Cl, and remove the organics under reduced pressure. Extract the residue with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄, concentrate and purify via silica gel chromatography (Pet ether/EtOAc, 50:1) to afford the title compound (3.0 g, 57%). ¹H NMR (400 MHz, DMSO-d₆): δ 7.29 (m, 10 H), 3.58 (s, 4 H), 3.05 (s, 3H), 2.50 (m, 2 H), 1.73 (m, 2 H), 1.07 (s, 6 H).

10

5

Preparation 101

Synthesis of 3-methoxy-3-methylbutan-1-amine hydrochloride

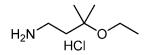


Treat a solution of N,N-dibenzyl-3-methoxy-3-methylbutan-1-amine (3 g, 10.1 mmol) in MeOH (50 mL) with palladium hydroxide on carbon (1 g) and stir the mixture under atmospheric H₂ at RT for 3 h. Remove the solids via filtration, wash with EtOAc, treat the filtrate drop-wise with methanolic HCl and concentrate to dryness to afford the title compound (1.01 g, 66%). ¹H NMR (400 MHz, DMSO-d₆): δ 8.04 (s, 2 H), 3.05 (s, 3 H), 2.52-2.49 (m, 2 H), 1.74-1.70 (m, 2 H), 1.07 (s, 6 H).

20

Preparation 102

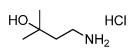
Synthesis of N,N-dibenzyl-3-ethoxy-3-methylbutan-1-amine.



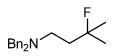
Treat a 0°C solution of 4-(dibenzylamino)-2-methylbutan-2-ol (13 g, 45.9 mmol) in
THF (200 mL), under N₂, portion wise with KH (30%, 6.7 g, 50.9 mmol), stir at 0°C for
0.5 h, add ethyl iodide (8.5 g, 55 mmol) drop-wise and warm to 60°C overnight. Cool to
0°C, quench with satd. NH₄Cl and concentrate partially. Extract with EtOAc (3x), wash
the combined organics with brine, dry over Na₂SO₄, concentrate and purify via silica gel

chromatography to afford the title compound (1.7 g, 12%). ¹H NMR (400 MHz, DMSO d_6): δ 7.36-7.21 (m, 10 H), 3.52 (s, 4 H), 3.13 (t, J = 7.2 Hz, 2 H), 2.40-2.36 (m, 2 H), 1.68-1.64 (m, 2 H), 0.99 (m, 6 H), 0.83 (q, J = 7.2 Hz, 3 H).

Preparation 103


Synthesis of 3-ethoxy-3-methylbutan-1-amine hydrochloride

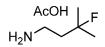
Treat a solution of N,N-dibenzyl-3-ethoxy-3-methylbutan-1-amine (1.7 g, 5.46 mmol) in MeOH (50 mL) with palladium hydroxide on carbon (0.4 g) and hydrogenate (20 psi) at RT overnight. Remove the solids via filtration, wash with MeOH, acidify the filtrate with methanolic HCl until pH=1-2, then concentrate to afford the title compound (862 mg, 94%). ¹H NMR (400 MHz, DMSO- d_6): δ 7.96 (m, 3 H), 3.34 (q, J = 6.8 Hz, 2 H), 2.82-2.73 (m, 2 H), 1.76-1.72 (m, 2 H), 1.12 (s, 6 H), 1.06 (t, J = 6.8 Hz, 3 H).


Preparation 104

Synthesis of 4-amino-2-methylbutan-2-ol hydrochloride.

Treat a solution of 4-(dibenzylamino)-2-methylbutan-2-ol (9 g, 31 mmol) in EtOH (90 mL) with palladium hydroxide on carbon (1.5 g) and hydrogenate (30 psi) at RT overnight. Remove the solids via filtration, rinse with EtOAc, add methanolic HCl to the filtrate and concentrated to dryness. Wash the resulting solid with Et₂O to afford the title compound (3.5 g, 79%). ¹H NMR (400 MHz, DMSO- d_6): δ 8.03 (s, 3 H), 2.83-2.78 (m, 2 H), 1.67-1.63 (m, 2 H), 1.09 (s, 6 H).

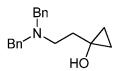
Synthesis of N,N-dibenzyl-3-fluoro-3-methylbutan-1-amine



Treat a -78°C solution of 4-(dibenzylamino)-2-methylbutan-2-ol (110.0 g, 0.39
mol) in DCM (1 L) drop-wise with diethylaminosulfur trifluoride (75 g, 0.47 mol) under N₂, allow it to warm to RT and stir overnight. Re-cool the mixture to -78°C, treat drop-wise with saturated NaHCO₃ (300 mL), warm to RT, extract with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (0.1-0.2% EtOAc/pet ether) to afford the title compound (44.0

10 g, 40% yield). MS (m/z): 286.2 (M+1).

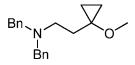
Preparation 106


Synthesis of 3-fluoro-3-methylbutan-1-amine acetic acid salt

Treat a solution of N,N-dibenzyl-3-fluoro-3-methylbutan-1-amine (18.03 g, 63.2 mmol) in MeOH (150 mL) and acetic acid (7.23 mL, 126 mmol) with 10% Pd/C (3.36 g, 3.16 mmol) and hydrogenate (345 kPa) for 2.5 days. Add additional palladium on carbon (1 g) and hydrogenate the mixture (345 kPa) overnight. Filter the mixture through diatomaceous earth, rinse well with MeOH and concentrate the filtrate to dryness to afford the title compound. MS (m/z): 106.1 (M-AcOH+1).

Preparation 107

Synthesis of 1-(2-(dibenzylamino)ethyl)cyclopropanol.

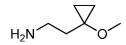

Add titanium isopropoxide (860 mg, 3.03 mmol) to a solution of ethyl 3-(dibenzylamino)propanoate (9.0 g, 30.3 mmol) in ethyl ether, cool to 0°C, add ethyl magnesium bromide (3M in Et₂O, 30.3 mL) drop-wise over 1 h, maintaining the temperature at ~0- 4°C, allow to warm to RT and stir overnight. Cool to 0°C, add satd. NH₄Cl, stir at RT for 15 minutes, make basic with satd. NaHCO₃ and extract with EtOAc (2x). Wash the combined organics with brine, dry over MgSO₄, concentrate and purify via silica gel chromatography to give the title compound (7.5 g, 88%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.20-7.15 (m, 8 H), 7.12-7.07 (m, 2 H), 3.45 (s, 4 H), 2.61-2.59 (m, 2 H), 1.57 (t, J = 5.6 Hz, 2 H), 0.36-0.33 (m, 2 H), 0.30-0.17 (m, 2 H).

10

5

Preparation 108

Synthesis of N,N-dibenzyl-2-(1-methoxycyclopropyl)ethanamine.



Treat a 0°C solution of 1-(2-(dibenzylamino)ethyl)cyclopropanol (3 g, 10.6 mmol) in THF (50 mL), under N₂, portion wise with NaH (60%, 0.85 g, 21.3 mmol), stir at 0°C for 0.5 h, add iodomethane (1.82 g, 12.8 mmol) drop wise, warm to RT and stir for 3 h. Cool the mixture to 0°C, quench with satd. NH₄Cl and partially concentrate. Extract with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄, concentrate and purify via silica gel chromatography to afford the title compound (1.2 g, 38%). ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.21 (m, 10 H), 3.60 (s, 4 H), 3.12 (s, 3 H), 2.65 (t, J = 8 Hz, 2 H), 1.75 (t, J = 8 Hz, 2 H), 0.68-0.65 (m, 2 H), 0.34-0.31 (m, 2H).

Preparation 109

25

Synthesis of 2-(1-methoxycyclopropyl)ethanamine.

WO 2013/134298

5

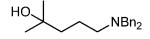
10

PCT/US2013/029176

Treat a solution of N,N-dibenzyl-2-(1-methoxycyclopropyl)ethanamine (1.1 g, 3.72 mmol) in MeOH (30 mL) with palladium hydroxide on carbon (0.5 g) and hydrogenate (1 atm) at RT for 3 h. Remove the solids via filtration, wash with MeOH and concentrate the filtrate to afford the title compound (180 mg, 42%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 3.14 (s, 3 H), 2.68 (t, J = 7.2 Hz, 2 H), 1.63 (t, J = 7.2 Hz, 2 H), 0.68-0.65 (m, 2 H), 0.40-0.37 (m, 2 H).

Preparation 110

Synthesis of methyl 4-(dibenzylamino)butanoate.


Bn₂N COOMe

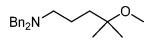
Heat a solution of methyl 4-aminobutanoate hydrochloride (11 g, 71.9 mmol), benzylbromide (25.2 g, 147.3 mmol) and K₂CO₃ (21.8 g, 158.2 mmol) in MeCN (200 mL) at 40°C overnight. Concentrate the mixture to dryness, pour the residue into water,
extract with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄, concentrate and purify via silica gel chromatography to give the title compound (19.5 g, 91%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.33-7.18 (m, 10 H), 3.57 (s, 3 H), 3.52 (s, 4 H), 2.43-2.28 (m, 4 H), 1.83-1.76 (m, 2 H).

20

Preparation 111

Synthesis of 5-(dibenzylamino)-2-methylpentan-2-ol.

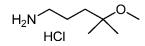
25


Treat a 0°C solution of methyl 4-(dibenzylamino)butanoate (19.5 g, 65.6 mmol) in THF (100 mL), under N₂, drop-wise with methyl magnesium bromide (65.6 mL, 196.9 mmol) over 1 h, then heat at 70°C overnight. Cool to 0°C, add satd. NH₄Cl drop-wise,

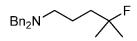
5

extract with EtOAc (3x), wash the combined organics with brine, dry over Na_2SO_4 , concentrate and purify via silica gel chromatography to afford the title compound (15 g, 77%).

Preparation 112

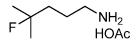

Synthesis of N,N-dibenzyl-4-methoxy-4-methylpentan-1-amine.

Treat a 0°C solution of 5-(dibenzylamino)-2-methylpentan-2-ol (3 g, 10.2 mmol) in THF (25 mL), under N₂, portion-wise with KH (30%, 1.5 g, 11.3 mmol), stir at 0°C for 0.5 h, add MeI (1.6 g, 11.3 mmol) drop-wise, warm to RT and stir for 3 h. Cool to 0°C, quench with satd. NH₄Cl, partially concentrate under reduced pressure, extract with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄, concentrate and purify via silica gel chromatography to afford the title compound (3.1 g, 97%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.38-7.21 (m, 10 H), 3.57 (s, 4 H), 3.14 (s, 3 H), 2.42 (t, J = 7.2 Hz, 2 H), 1.58-1.52 (m, 2 H), 1.43-1.39 (m, 2 H), 1.11 (s, 6 H).


Preparation 113

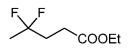
Synthesis of 4-methoxy-4-methylpentan-1-amine hydrochloride.

Treat a solution of N,N-dibenzyl-4-methoxy-4-methylpentan-1-amine (3.1 g, 10 mmol) in MeOH (50 mL) with palladium hydroxide on carbon (1 g) and hydrogenate (30 psi) at RT for 3 h. Remove the solids via filtration, wash with MeOH, acidify the filtrate with methanolic HCl and concentrated to dryness. Triturate with ethyl ether, collect the solids via filtration and dry to afford the title compound (816 mg, 51%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.94 (s, 3 H), 3.09 (s, 3 H), 2.76-2.68 (m, 2 H), 1.57-1.49 (m, 2 H), 1.43-1.40 (m, 2 H), 1.05 (s, 6 H).


Synthesis of N,N-dibenzyl-4-fluoro-4-methylpentan-1-amine.

Add diethylaminosulfur trifluoride (17.9 g, 111 mmol) drop-wise to a -78°C
solution of 5-(dibenzylamino)-2-methylpentan-2-ol (11 g, 37 mmol) in DCM (100 mL), under N₂, warm to RT and stir overnight. Pour the mixture into ice-water, neutralize with satd. NaHCO₃, extract with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄, concentrate and purify via silica gel chromatography to afford the title compound (4.5 g, 41%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.30-7.13 (m, 10 H), 3.48 (s, 4 H), 2.35 (m, 2 H), 1.51-1.48 (m, 4 H), 1.22 (d, J = 21.2 Hz, 6 H).

Preparation 115


Synthesis of 4-fluoro-4-methylpentan-1-amine acetate.

Treat a solution of N,N-dibenzyl-4-fluoro-4-methylpentan-1-amine (400 mg, 1.34 mmol) in MeOH (20 mL) with palladium hydroxide on carbon (200 mg) and hydrogenate (1 atm) at RT overnight. Remove the solids via filtration, wash with EtOAc, add HOAc (80 mg) to the filtrate and concentrate to dryness. Add ether, collect the solid via filtration and dry to afford the title compound (196 mg, 82%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 3.39-3.36 (m, 2 H), 2.36-2.23 (m, 4 H), 2.03 (d, J = 21.6 Hz, 6 H).

Preparation 116

Synthesis of ethyl 4,4-difluoropentanoate.

Add diethylaminosulfur trifluoride (29.3 g, 181.7 mmol) drop-wise to a -70° C solution of ethyl 4-oxopentanoate (21.8 g, 151.4 mmol) in DCM (300 mL), under N₂,

WO 2013/134298

5

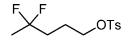
10

PCT/US2013/029176

warm to RT and stir overnight. Pour the mixture slowly into ice-water, separate the layers and extract the aqueous layer with DCM (2x). Wash the combined organics with satd. NaHCO₃, then brine, dry over Na₂SO₄, concentrate and purify via silica gel chromatography (EtOAc/Pet ether) to give the title compound (4.4 g, 17%). ¹H NMR (400 MHz, CDCl₃): δ 4.15 (q, J = 7.2 Hz, 2 H), 2.52 (t, J = 8.0 Hz, 2 H), 2.28-2.15 (m, 2 H), 1.62 (t, J = 18.0 Hz, 3 H), 1.27 (t, J = 7.2 Hz, 3 H).

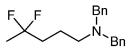
Preparation 117

Synthesis of 4,4-difluoropentan-1-ol.


Add lithium aluminum hydride [LAH] (2.3 g, 60 mmol) portion-wise to a 0°C solution of ethyl 4,4-difluoropentanoate (8.3 g, 50 mmol) in ether (150 mL), under N₂, warm to RT and stir overnight. Cool to 0°C, add water (2.3 mL) drop-wise, then 10% NaOH (2.3 mL), remove the solids via filtration and rinse with ether. Wash the filtrate
15 with brine, dry over Na₂SO₄ and concentrate to dryness to afford the title compound (5 g, 81%). ¹H NMR (400 MHz, CDCl₃): δ 3.63 (t, J = 6.4 Hz, 2 H), 1.95-1.82 (m, 2 H), 1.72-1.65 (m, 2 H), 1.54 (t, J = 18.4 Hz, 3 H).

Preparation 118

20


25

Synthesis of 4,4-difluoropentyl 4-methylbenzenesulfonate.

Treat a solution of 4,4-difluoropentan-1-ol (5 g, 40.3 mmol) and TsCl (8.4 g, 44.3 mmol) in DCM (80 mL) with TEA (6.1 g, 60 mmol) and DMAP (0.5 g, 4 mmol) and stir at RT overnight. Wash the mixture successively with 2M HCl, satd. NaHCO₃, then brine, dry over Na₂SO₄, concentrate and purify by silica gel chromatography (EtOAc/Pet ether) to give the title compound (7.1 g, 63%). ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 8.0 Hz, 2 H), 7.36 (d, J = 8.0 Hz, 2 H), 4.08 (t, J = 5.6 Hz, 2 H), 2.47 (s, 3 H), 1.94-1.84 (m, 4 H), 1.57 (t, J = 18.4 Hz, 3 H).

Synthesis of N,N-dibenzyl-4,4-difluoropentan-1-amine.

5 Treat a solution of 4,4-difluoropentyl 4-methylbenzenesulfonate (7.1 g, 25.5 mmol) in MeCN (100 mL) with K₂CO₃ (7.0 g, 51 mmol) and NaI (0.33 g, 2.6 mmol) and heat to reflux overnight. Cool to RT, concentrate under reduced pressure, add water, extract with EtOAc (3x), wash the combined organics with water, then brine, dry, concentrate and purify by silica gel chromatography (EtOAc/Pet ether) to give the title
10 compound (6.6 g, 85%). ¹H NMR (400 MHz, CDCl₃): δ 7.29-7.14 (m, 10 H), 3.48 (s, 4 H), 2.37 (t, J = 6.8 Hz, 2 H), 1.80-1.68 (m, 2 H), 1.62-1.55 (m, 2 H), 1.48 (t, J = 9.2 Hz, 3 H).

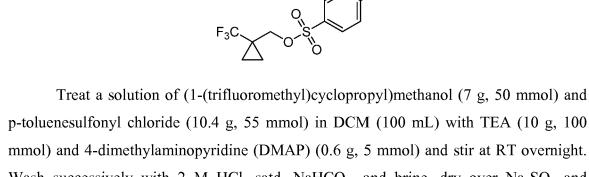
Preparation 120

Synthesis of 4,4-difluoropentan-1-amine hydrochloride.

Treat a solution of N,N-dibenzyl-4,4-difluoropentan-1-amine (6.6 g, 21.7 mmol) in MeOH (150 mL) with palladium hydroxide on carbon (50 wt%,1.6 g) and hydrogenate (30 psi) overnight. Remove the catalyst via filtration, add methanolic HCl drop-wise then concentrate to dryness to afford the title compound (3.18 g). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.05 (s, 3 H), 2.76-2.71 (m, 2 H), 1.96-1.84 (m, 2 H), 1.69-1.62 (m, 2 H), 1.54 (t, J = 18.8 Hz, 3 H); MS (ESI) m/z: 124.0 (M+H⁺).

Preparation 121

Synthesis of (1-(trifluoromethyl)cyclopropyl)methanol.


PCT/US2013/029176

WO 2013/134298

Treat a 0°C solution of 1-(trifluoromethyl)cyclopropanecarboxylic acid (9 g, 58.4 mmol) in ether (140 mL), under N₂, portion-wise with LAH (2.9 g, 76 mmol), allow to warm to RT and stir overnight. Re-cool to 0°C, slowly add HCl, warm to RT and separate the layers. Extract the aqueous layer with ether (2x), wash the combined organics with brine, dry over Na₂SO₄ and concentrate under reduced pressure (water bath temp <30°C) to afford the title compound (7 g, 86%). ¹HNMR (400 MHz, DMSO-*d*₆): δ 4.94 (t, J = 6.0 Hz, 1 H), 3.54 (d, J = 6.0 Hz, 2 H), 0.87-0.84 (m, 2 H), 0.81-0.79 (m, 2 H).

Preparation 122

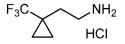
Synthesis of (1-(trifluoromethyl)cyclopropyl)methyl 4-methylbenzenesulfonate.

15 Wash successively with 2 M HCl, satd. NaHCO₃, and brine, dry over Na₂SO₄ and concentrate to give the title compound (12 g, 81%). ¹H NMR (400 MHz, DMSO-*d*₆): δ
7.79 (d, J = 8.0 Hz, 2 H), 7.50 (d, J = 8.0 Hz, 2 H), 4.13 (s, 2 H), 2.43 (s, 3 H), 1.08-1.05 (m, 2 H), 0.96-0.94 (m, 2 H).

Preparation 123

Synthesis of 2-(1-(trifluoromethyl)cyclopropyl)acetonitrile.

Treat a solution of (1-(trifluoromethyl)cyclopropyl)methyl 4-25 methylbenzenesulfonate (12 g, 40.8 mmol) in DMF (150 mL) with potassium cyanide (3.5 g, 53 mmol) and heat at 50-70°C for 3 days. Add water, extract with EtOAc (3x),


20

10

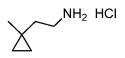
wash the combined organics with water, then brine, dry and concentrate under reduced pressure to give the title compound (2.4 g, 39%). ¹H NMR (400 MHz, CDCl3): δ 2.81 (s, 2H), 1.24-1.18 (m, 2 H), 0.95-0.92 (m, 2 H).

Preparation 124

Synthesis of 2-(1-(trifluoromethyl)cyclopropyl)ethanamine hydrochloride.

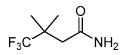
Add borane (10 M in dimethylsulfide, 3 mL, 30 mmol) to a solution of 2-(1- (trifluoromethyl)cyclopropyl)acetonitrile (2.2 g, 14.7 mmol) in THF (60 mL), under N_2 ,

and heat at 70 °C overnight. Cool to 0°C, add methanolic HCl drop-wise, concentrate to dryness, co-evaporate with MeOH, add EtOAc, collect the solids via filtration and dry to afford the title compound (1.1 g, 40%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.05 (s, 3 H), 2.87 (t, *J* = 8.4 Hz, 2 H), 1.90-1.86 (m, 2 H), 0.96-0.93 (m, 2 H), 0.82-0.81 (m, 2 H).

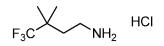

Preparation 125

Synthesis of (1-methylcyclopropyl)methyl methanesulfonate.

Treat a 0°C solution of (1-methylcyclopropyl)methanol (1.0 g, 11.61 mmol) in DCM (50 mL) with TEA (1.29 g, 12.77 mmol), add methanesulfonyl chloride (1.46 g, 12.77 mmol) drop-wise and stir at 0°C for 2 h. Warm the mixture to RT, wash with H₂O, then brine, dry over Na₂SO₄ and concentrate to dryness to afford the title compound (1.85 g, 97%) as an oil. ¹H NMR (400 MHz, DMSO-d₆): δ 4.05 (s, 2 H), 3.20 (s, 3 H), 1.17 (s, 3 H), 0.59 (m, 2 H), 0.47 (m, 2 H).

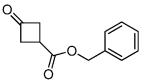

Synthesis of 2-(1-methylcyclopropyl)ethanamine hydrochloride.

Treat a solution of (1-methylcyclopropyl)methyl methanesulfonate (1.85 g, 11.27
mmol) in DMSO (20 mL) with sodium cyanide (1.104 g, 22.53 mmol) and stir at RT for 4
h. Add H₂O, extract with EtOAc (3x), wash the combined organics with brine, dry over Na₂SO₄ and concentrate carefully to afford a colorless oil. Dissolve the oil in THF (15 mL), add borane dimethylsulfide complex (2.0M in THF, 8.45 mL, 16.90 mmol), heat at 65°C for 4 h, then cool to RT overnight. Concentrate the mixture to dryness, coevaporate with EtOAc, triturate with ethyl ether, collect the solid via filtration and dry to afford the title compound (485 mg, 31%). ¹H NMR (400 MHz, DMSO-d₆): δ 7.90 (s, 2 H), 2.82 (m, 2 H), 1.48 (m, 2 H), 0.99 (s, 3 H), 0.31-0.22 (m, 4 H).


Preparation 127

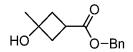
Synthesis of 4,4,4-trifluoro-3,3-dimethylbutanamide

Treat a 0°C solution of 4,4,4-trifluoro-3,3-dimethylbutanoic acid [See: US2010/0240663] (17 g, 100 mmol) in acetonitrile (200 mL) with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (23 g, 120 mmol) and 1-hydroxybenzotriazole (16.2 g, 120 mmol), stir at 0°C for 2 h, treat with concentrated ammonia in water (25 wt%, 15 mL), allow to warm to RT and stir overnight. Remove the organics under reduced pressure, dissolve the residue in EtOAc, and wash with saturated. NaHCO₃, then brine, dry over MgSO₄, and concentrate to dryness. Treat the material with pet ether, collect the solid via filtration and dry to afford the title compound (13 g, 77% yield). ¹H NMR (400 MHz, DMSO-d6): δ 7.46 (s, 1 H), 6.93 (s, 1 H), 2.19 (s, 2 H), 1.18 (s, 6 H).


Synthesis of 4,4,4-trifluoro-3,3-dimethylbutan-1-amine hydrochloride.

Treat a solution of 4,4,4-trifluoro-3,3-dimethylbutanamide (10 g, 59.1 mmol) in
THF (120 mL) with BH₃ (1.0 M in THF, 295 mL, 295 mmol), stir for 15 min at RT, then heat to reflux overnight. Cool the mixture to 0°C, treat drop-wise with MeOH, then methanolic HCl and partially concentrate under reduced pressure. Collect the solids via filtration, rinse with EtOAc and dry to afford the title compound as an off-white solid (5.2 g, 57% yield). ¹H NMR (400 MHz, DMSO-d6): δ 8.10 (s, 3 H), 2.83 (m, 2 H), 1.81-1.76 (m, 2 H), 1.11 (s, 6 H).

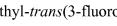
Preparation 129

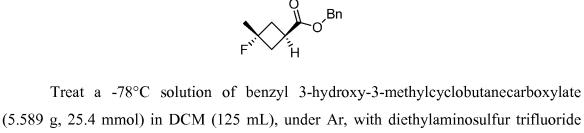

Synthesis of benzyl 3-oxocyclobutanecarboxylate.

Slowly add carbonyldiimidazole (42.6 g, 263 mmol) to a solution of 3-oxocyclopropane carboxylic acid (25.0 g, 219 mmol) in DCM (500 mL), stir at RT for 2 h, add benzyl alcohol (24.17 g, 223 mmol) and stir at RT for 16 h. Add water, extract with DCM (2x), wash the combined organics with brine, dry over Na₂SO₄, concentrate to dryness and purify by silica gel chromatography (EtOAc/Hex) to afford the title compound (29.5 g, 66%) as a colorless syrup. ¹H NMR (400 MHz, DMSO-d₆): δ 7.387.35 (m, 5 H); 5.14 (s, 2 H); 3.62 (m, 5 H); MS (ESI) m/z: 227.1 (M+Na⁺).

Preparation 130

Synthesis of benzyl 3-hydroxy-3-methylcyclobutanecarboxylate.


10


PCT/US2013/029176

Treat a -78°C solution of benzyl 3-oxocyclobutanecarboxylate (11.05 g, 54.1 mmol) in THF (155 mL) drop-wise with methyl magnesium bromide (3M in diethyl ether, 27.1 mL, 81 mmol) and stir at -78°C for 0.5 h. Add satd. NH₄Cl, extract with EtOAc (2x), dry the combined organics, evaporate and purify via silica gel chromatography (acetone/hexanes) to afford the title compound (5.589 g, 47 %) as a colorless oil. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.36-7.29 (m, 5 H); 5.08 (m, 3 H); 2.75-2.66 (m, 1 H); 2.13-2.12 (m, 4 H); 1.21 (s, 3 H); MS (ESI) m/z: 243.1 (M+Na⁺).

Preparation 131

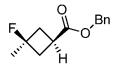
Synthesis of benzyl 3-methyl-*trans*(3-fluorocyclobutanecarboxylate).

(5.03 mL, 38.1 mmol), stir at -78°C for 0.5 h, then allow to warm to RT overnight. Quench the mixture with satd. NaHCO₃, extract with EtOAc (2x), dry the combined 15 organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (Et₂O/Hex) to afford the title compound (3.82 g, 68%) as a colorless oil. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.35 (m, 5 H); 5.10 (s, 2 H); 3.23 (m, 1 H); 2.54 (m, 2 H); 2.32 (m, 2 H); 1.38 (d, J = 22.3 Hz, 3 H); MS (ESI) m/z: 245.1 (M+Na⁺).

20

Preparation 132

Synthesis of 3-methyl-trans(3-fluorocyclobutanecarboxylic acid).



Treat a solution of benzyl 3-methyl-trans(3-fluorocyclobutanecarboxylate) (3.82 25 g, 17.20 mmol) in MeOH (100 mL) with 10% palladium on carbon (dry) (1.831 g, 1.720 mmol) and hydrogenate at atmospheric pressure (balloon) overnight. Remove the solids via filtration through diatomaceous earth and concentrate the filtrate to dryness to afford the title compound (1.83 g, 81%) as a colorless oil. ¹H NMR (400 MHz, DMSO- d_6): δ 12.29 (s, 1 H); 3.10-3.01 (m, 1 H); 2.48-2.47 (m, 2 H); 2.32-2.21 (m, 2 H); 1.39 (d, J = 22.3 Hz, 3 H).

5

Preparation 133

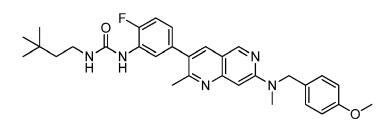
Synthesis of benzyl 3-methyl-cis(3-fluoro-cyclobutanecarboxylate).

Add diethylaminosulfur trifluoride (1.197 mL, 9.06 mmol) to a -78°C solution of
benzyl 3-hydroxy-3-methylcyclobutanecarboxylate (1.330 g, 6.04 mmol) in DCM (40 mL), under Ar, stir at -78°C for 0.5 h, then allow to warm to RT overnight. Quench with satd. NaHCO₃, extract with EtOAc (2x), dry the combined organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (Et₂O/Hex) to afford the title compound (94 mg, 7%) as a colorless oil. ¹H NMR (400 MHz, DMSO-d₆): δ 7.397.28 (m, 5 H), 5.09 (s, 2 H), 2.82 (m, 1 H), 2.46-2.28 (m, 4 H), 1.43 (d, J = 22.2 Hz, 3 H);

 $\begin{array}{ll} \text{15} & 7.28 \ (\text{m}, 5 \ \text{H}), \ 5.09 \ (\text{s}, 2 \ \text{H}), \ 2.82 \ (\text{m}, 1 \ \text{H}), \ 2.46\text{-}2.28 \ (\text{m}, 4 \ \text{H}), \ 1.43 \ (\text{d}, \ \text{J} = 22.2 \ \text{H}2 \\ \text{MS (ESI) m/z: } 245.1 \ (\text{M+Na}^+). \end{array}$

Preparation 134

Synthesis of 3-methyl-cis(3-fluorocyclobutanecarboxylic acid).


20

25

Treat a solution of benzyl 3-methyl-cis(3-fluorocyclobutanecarboxylate) (0.084 g, 0.378 mmol) in MeOH (5 mL) with 10% palladium on carbon (dry) (0.040 g, 0.038 mmol) and hydrogenate at atmospheric pressure (balloon) overnight. Remove the solids via filtration through diatomaceous earth and concentrate the filtrate to dryness to afford the title compound (48 mg, 96%) as a pale yellow solid. ¹H NMR (400 MHz, DMSO-d₆): δ 12.32 (s, 1 H), 2.62 (m, 1 H), 2.30 (m, 4 H), 1.48-1.40 (m, 3 H).

Preparation 135

Synthesis of 1-(3,3-dimethylbutyl)-3-(2-fluoro-5-(7-((4-methoxybenzyl)(methyl)amino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)urea.

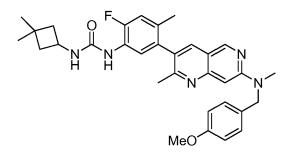
Treat solution of prop-1-en-2-yl (2-fluoro-5-(7-((4a methoxybenzyl)(methyl)amino)-2-methyl-1.6-naphthyridin-3-yl)phenyl)carbamate (0.398 g, 0.818 mmol) and 3,3-dimethylbutylamine (0.166 g, 1.636 mmol) in dioxane (10 mL) with DBU (0.025 ml, 0.164 mmol) and heat at 80°C overnight. Cool to RT, add EtOAc 10 and wash with 10% LiCl, then brine. Dry the organic layer over MgSO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (370 mg, 85%). ¹H NMR (400 MHz, DMSO-d₆): δ 8.97 (s, 1 H), 8.37 (s, 1 H), 8.22 (d, J = 7.9 Hz, 1 H), 7.99 (s, 1 H), 7.26 (dd, J = 11.4, 8.4 Hz, 1 H), 7.15 (d, J = 8.4 Hz, 2 H), 6.98 (m, 1 H), 6.85 (d, J = 8.5 Hz, 2 H), 6.73 (s, 1 H), 6.55 (t, J = 5.5 Hz, 1 H), 4.86 (s, 2 H), 3.69 (s, 3 H), 3.08 (m, 5 H), 2.48 (s, 3 H), 1.33 (m, 2 H), 0.88 (s, 9 H); 15

MS (ESI) m/z: 530.0 (M+H⁺).

Prep	Chemical Name	Structure	Physical Data
No.			
136	1-(3,3-dimethylbutyl)-		MS (ESI)
	3-(2-fluoro-5-(7-((4-		m/z: 544.3
	methoxybenzyl)(meth		$(M+H^+)$
	yl)amino)-2-methyl-		
	1,6-naphthyridin-3-		
	yl)-4-		

The following compounds are prepared essentially by the method of Preparation 135.

WO 2013/134298


	methylphenyl)urea		
137	1-(3-cyano-3- methylbutyl)-3-(2,4- difluoro-5-(7-((4- methoxybenzyl)(meth yl)amino)-2-methyl- 1,6-naphthyridin-3- yl)phenyl)urea	$\overset{O}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{\overset{P}{$	MS (ESI) m/z: 559.3 (M+H ⁺)
138	1-(3,3-dimethylbutyl)- 3-(5-(2-ethyl-7-((4- methoxybenzyl)(meth yl)amino)-1,6- naphthyridin-3-yl)- 2,4- difluorophenyl)urea		MS (ESI) m/z: 562.3 (M+H ⁺)
139	1-(3,3-dimethylbutyl)- 3-(5-(2-ethyl-7-((4- methoxybenzyl)(meth yl)amino)-1,6- naphthyridin-3-yl)-2- fluoro-4- methylphenyl)urea		MS (ESI) m/z: 558.4(M+H ⁺)
140	1-cycloheptyl-3-(2- fluoro-5-(7-((4- methoxybenzyl)(meth yl)amino)-2-methyl- 1,6-naphthyridin-3- yl)-4- methylphenyl)urea		MS(ESI) m/z: 556.3 (M+H ⁺)

141	1-(3,3-dimethylbutyl)- 3-(3-(7-((4-		MS (ESI) m/z: 526.3
	methoxybenzyl)(meth		$(M+H^+)$
	yl)amino)-2-methyl-		
	1,6-naphthyridin-3-		
	yl)-4-		
	methylphenyl)urea		
142	1-(3,3-dimethylbutyl)-		MS (ESI)
	3-(5-(2-ethyl-7-((4-		m/z: 544.3
	methoxybenzyl)(meth		$(M+H^+)$
	yl)amino)-1,6-		
	naphthyridin-3-yl)-2-		
	fluorophenyl)urea		
143	1-cycloheptyl-3-(2,4-	Prove	MS(ESI) m/z:
	difluoro-5-(7-((4-		560.3 (M+H ⁺)
	methoxybenzyl)(meth		
	yl)amino)-2-methyl-	~ 0	
	1,6-naphthyridin-3-		
	yl)phenyl)urea		
144	1-(3-cyano-3-		MS (ESI)
	methylbutyl)-3-(2-		m/z: 555.3
	fluoro-5-(7-((4-		$(M+H^+)$
	methoxybenzyl)(meth		
	yl)amino)-2-methyl-		
	1,6-naphthyridin-3-		
	yl)-4-		
	methylphenyl)urea		
145	1-(3-cyano-3-		MS (ESI)
	methylbutyl)-3-(2-		m/z: 541.3
	fluoro-5-(7-((4-		$(M+H^+)$
	methoxybenzyl)(meth		

	1) and in a) 2 mothed		
	yl)amino)-2-methyl-		
	1,6-naphthyridin-3-		
	yl)phenyl)urea		
146	1-(2-fluoro-5-(7-((4-	0 F	MS (ESI)
	methoxybenzyl)(meth		m/z: 572.2
	yl)amino)-2-methyl-		$(M+H^+)$
	1,6-naphthyridin-3-		
	yl)-4-methylphenyl)-		
	3-(2-		
	(trifluoromethoxy)ethy		
	1)urea		
147	1-(4,4-	5	MS(ESI) m/z:
		F L L L L L L L L L L L L L L L L L L L	578.3 (M+H ⁺)
	difluorocyclohexyl)-3-		378.3 (M+H)
	(2-fluoro-5-(7-((4-		
	methoxybenzyl)(meth		
	yl)amino)-2-methyl-		
	1,6-naphthyridin-3-		
	yl)-4-		
	methylphenyl)urea		
148	1-(2,4-difluoro-5-(7-	o FyrF	MS(ESI) m/z:
	((4-		560.3 (M+H ⁺)
	methoxybenzyl)(meth		
	yl)amino)-2-methyl-		
	1,6-naphthyridin-3-		
	yl)phenyl)-3-((3,3-		
	dimethylcyclobutyl)m		
	ethyl)urea		

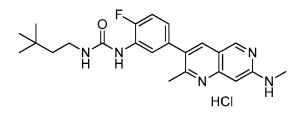
Synthesis of 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(7-((4-

methoxybenzyl)(methyl)amino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea.

Heat a mixture of 3,3-dimethylcyclobutane carboxylic acid (0.138 g, 1.080 mmol), DPPA (0.233 ml, 1.080 mmol) and TEA (0.100 ml, 0.720 mmol) in dioxane (3 mL) at 100°C for 15 minutes, add 3-(5-amino-4-fluoro-2-methylphenyl)-N-(4-methoxybenzyl)-N,2-dimethyl-1,6-naphthyridin-7-amine (0.15 g, 0.360 mmol) and heat at 100°C for an additional 2 h. Cool to RT, add satd. NaHCO₃, extract with EtOAc (2x), wash the combined organics with H₂O, then brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (135 mg, 69%) as an orange pasty solid. MS(ESI) m/z: 542.3 (M+H⁺).

10

5


Prep	Chemical Name	Structure	Physical
No.			Data
150	1-(3,3- dimethylcyclobutyl)-3- (2-fluoro-5-(7-((4- methoxybenzyl)(methy l)amino)-2-methyl-1,6- naphthyridin-3-		MS(ESI) m/z: 528.3 (M+H ⁺)
	yl)phenyl)urea		
151	1-(2,4-difluoro-5-(7- ((4- methoxybenzyl)(methy l)amino)-2-methyl-1,6-		MS(ESI) m/z: 550.2 (M+H ⁺)
	naphthyridin-3- yl)phenyl)-3-(3-fluoro-		

The following compounds are prepared essentially by the method of Preparation 149.

С	cis(3-	
r	methylcyclobutyl))urea	

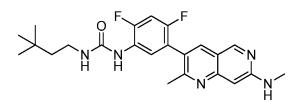
Example 1

Synthesis of 1-(3,3-dimethylbutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea hydrochloride.

Stir a solution of 1-(3,3-dimethylbutyl)-3-(2-fluoro-5-(7-((4methoxybenzyl)(methyl)amino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)urea (0.37)g, 0.699 mmol) in TFA (5 mL, 64.9 mmol) at RT for 3 h. Concentrate the mixture to dryness, add satd. NaHCO₃ and extract with DCM (3x). Concentrate the combined 10 organics to dryness, triturate with MeCN, collect the solid via filtration and dry to afford the free-base (214 mg, 75%). MS (ESI) m/z: 410.2 (M+H⁺). Treat a suspension of the free base (0.119 g, 0.291 mmol) in MeCN (3 mL) with 0.1N HCl (3.49 mL, 0.349 mmol), sonicate until all solids dissolve, then freeze and lyophilize. Triturate with Et₂O, collect the solid via filtration and dry to afford the title compound (95 mg, 72%) as a pale orange solid. ¹H NMR (400 MHz, DMSO-d₆): δ 9.15 (s, 1 H), 8.63 (m, 1 H), 8.50 (s, 1 H), 8.29 15 (m, 1 H), 7.99 (m, 1 H), 7.34-7.31 (m, 1 H), 7.05 (m, 1 H), 6.66 (m, 2 H), 3.08 (m, 2 H), 2.91 (s, 3 H), 2.67 (s, 3 H), 1.33 (t, J = 7.9 Hz, 2 H), 0.88 (s, 9 H); MS (ESI) m/z: 410.2 $(M+H^{+}).$

20 The following compounds are prepared essentially by the method of Example 1.

Ex	Chemical Name	Structure	Physical
No.			Data


2	1-(3-cyano-3-methylbutyl)- 3-(2,4-difluoro-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3- yl)phenyl)urea hydrochloride	MS (ESI) m/z: 439.2 (M+H ⁺)
3	1-(3,3-dimethylbutyl)-3-(5- (2-ethyl-7-(methylamino)- 1,6-naphthyridin-3-yl)-2,4- difluorophenyl)urea hydrochloride	MS (ESI) m/z: 442.2 (M+H ⁺)
4	1-(3,3-dimethylbutyl)-3-(5- (2-ethyl-7-(methylamino)- 1,6-naphthyridin-3-yl)-2- fluoro-4-methylphenyl)urea hydrochloride	MS (ESI) m/z: 438.3 (M+H ⁺)
5	1-cycloheptyl-3-(2-fluoro-4- methyl-5-(2-methyl-7- (methylamino)-1,6- naphthyridin-3- yl)phenyl)urea hydrochloride	MS(ESI) m/z: 436.2 (M+H ⁺)
6	1-(3,3-dimethylbutyl)-3-(4- methyl-3-(2-methyl-7- (methylamino)-1,6- naphthyridin-3- yl)phenyl)urea hydrochloride	MS (ESI) m/z: 406.3 (M+H ⁺)
7	1-(3,3-dimethylbutyl)-3-(5- (2-ethyl-7-(methylamino)- 1,6-naphthyridin-3-yl)-2-	MS (ESI) m/z: 424.2

	fluorophenyl)urea		$(M+H^+)$
	hydrochloride		
8	1-cycloheptyl-3-(2,4-		MS(ESI)
	difluoro-5-(2-methyl-7-		m/z: 440.2
	(methylamino)-1,6-		$(M+H^+)$
	naphthyridin-3-		
	yl)phenyl)urea		
	hydrochloride		
9	1-(3-cyano-3-methylbutyl)-	N _N O ^F	MS (ESI)
	3-(2-fluoro-4-methyl-5-(2-		m/z: 435.3
	methyl-7-(methylamino)-		$(M+H^+)$
	1,6-naphthyridin-3-		
	yl)phenyl)urea		
10	1-(3-cyano-3-methylbutyl)-	N _N O ^F	MS (ESI)
	3-(2-fluoro-5-(2-methyl-7-		m/z: 421.2
	(methylamino)-1,6-		$(M+H^+)$
	naphthyridin-3-		
	yl)phenyl)urea		
11	1-(2-fluoro-4-methyl-5-(2-	o F	MS (ESI)
	methyl-7-(methylamino)-	F ₃ C ^{-O} NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	m/z: 452.2
	1,6-naphthyridin-3-		$(M+H^+)$
	yl)phenyl)-3-(2-		
	(trifluoromethoxy)ethyl)ure		
	a hydrochloride		
12	1-(4,4-difluorocyclohexyl)-		MS(ESI)
	3-(2-fluoro-4-methyl-5-(2-		m/z: 458.2
	methyl-7-(methylamino)-		$(M+H^+)$
	1,6-naphthyridin-3-		
	yl)phenyl)urea		
	hydrochloride		

131-(2,4-difluoro-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)- 3-((3,3- dimethylcyclobutyl)methyl) urea hydrochloride $MS(ESI m/z: 440 (M+H^+))$ $M=1000 (M+H^+)$ 141-(3,3-dimethylcyclobutyl)- 3-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)- $MS(ESI m/z: 420 (M+H^+))$ $MS(ESI m/z: 420 (M+H^+))$	0.2
naphthyridin-3-yl)phenyl)- 3-((3,3- dimethylcyclobutyl)methyl) urea hydrochloride M <td>)</td>)
3-((3,3-) dimethylcyclobutyl)methyl) urea hydrochlorideMS(ESI m/z: 42214 $1-(3,3-dimethylcyclobutyl)-$ $3-(2-fluoro-4-methyl-5-(2-))MS(ESI m/z: 422)$	
$\begin{array}{ c c c c c c } \hline dimethylcyclobutyl)methyl) \\ urea hydrochloride \\\hline 14 & 1-(3,3-dimethylcyclobutyl)- \\ 3-(2-fluoro-4-methyl-5-(2- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	[)
urea hydrochlorideMS(ESI141-(3,3-dimethylcyclobutyl)- 3-(2-fluoro-4-methyl-5-(2- $MS(ESI m/z: 422)$	D
141-(3,3-dimethylcyclobutyl)- 3-(2-fluoro-4-methyl-5-(2- 0 F MS(ESI m/z: 422	l)
3-(2-fluoro-4-methyl-5-(2-	l)
	2.2
)
1,6-naphthyridin-3-	
yl)phenyl)urea	
15 1-(3,3-dimethylcyclobutyl)-	0
3-(2-fluoro-5-(2-methyl-7-	8.2
(methylamino)-1,6-)
naphthyridin-3-	
yl)phenyl)urea	
hydrochloride	
$\begin{vmatrix} 16 \\ 1-(2,4-difluoro-5-(2-methyl- F'') \\ F'' \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	D
7-(methylamino)-1,6- H H H H H H H H H H	0.2
naphthyridin-3-yl)phenyl)-)
3-(3-methyl-trans(3-	
fluorocyclobutyl))urea	
17 1-(3,3-dimethylbutyl)-3-(2- 0 F MS (ES	JI)
fluoro-4-methyl-5-(2- N N N $m/z: 42^{2}$	4.2
methyl-7-(methylamino)-)
1,6-naphthyridin-3-	
yl)phenyl)urea	

Example 18

Synthesis of 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3-dimethylbutyl)urea.

Heat a solution of prop-1-en-2-yl 2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenylcarbamate (1.449 g, 3.77 mmol), 3,3-dimethylbutylamine (0.572 g, 5.65 mmol), and 1-methylpyrrolidine (0.080 g, 0.942 mmol) in dioxane (30 mL) at 80°C overnight. Cool to RT, collect the precipitate via filtration and dry. Concentrate the filtrate, treat with DCM, sonicate for 0.5 h, collect the solid via filtration and combine with the solid above to afford the title compound (1.43 g, 89%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.86 (s, 1 H), 8.35 (s, 1 H), 8.13 (t, 1 H), 8.00 (s, 1 H), 7.40 (t, 1 H), 8.85-8.82 (m, 1 H), 6.52-6.49 (m, 2 H), 3.07-3.04 (m, 2 H), 2.82 (d, 3 H), 2.38 (s, 3 H), 1.34-1.30 (m, 2 H), 0.87 (s, 9 H); MS (ESI) m/z: 428.2 (M+H⁺).

15 The following compounds are prepared essentially by the method of Example 18.

Ex	Chemical Name	Structure	Physical
No			Data
19	1-(3,3-dimethylbutyl)-3-(4-	, o f	MS (ESI)
	fluoro-3-(2-methyl-7-		m/z: 410.2
	(methylamino)-1,6-	N N H	$(M+H^+)$
	naphthyridin-3-yl)phenyl)urea		
	hydrochloride		

20	1-(2,2-dimethyltetrahydro-2H- pyran-4-yl)-3-(2-fluoro-4- methyl-5-(2-methyl-7- (methylamino)-1,6- naphthyridin-3-yl)phenyl)urea hydrochloride		MS(ESI) m/z: 452.3 (M+H ⁺)
21	1-((3,3- dimethylcyclobutyl)methyl)-3- (2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)urea hydrochloride		MS(ESI) m/z: 436.2 (M+H ⁺)
22	1-(4,4-difluorocyclohexyl)-3- (2-fluoro-4-methyl-5-(7- (methylamino)-1,6- naphthyridin-3-yl)phenyl)urea hydrochloride		MS(ESI) m/z: 444.2 (M+H ⁺)
23	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2-(1- (trifluoromethyl)cyclopropyl)e thyl)urea hydrochloride	F ₃ C	MS(ESI) m/z: 476.2 (M+H ⁺)
24	1-(2,4-difluoro-5-(2-methyl-7- (methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (3-methoxy-3- methylbutyl)urea hydrochloride		MS(ESI) m/z: 444.2 (M+H ⁺)

25	1-(trans-4-cyano-4-		MS(ESI)
	methylcyclohexyl)-3-(2-		m/z: 461.2
	fluoro-4-methyl-5-(2-methyl-		$(M+H^+)$
	7-(methylamino)-1,6-		
	naphthyridin-3-yl)phenyl)urea		
26	1-(cis-4-cyano-4-		MS(ESI)
	methylcyclohexyl)-3-(2-		m/z: 461.2
	fluoro-4-methyl-5-(2-methyl-		$(M+H^+)$
	7-(methylamino)-1,6-		
	naphthyridin-3-yl)phenyl)urea		
27	1-(2-fluoro-4-methyl-5-(2-	6 F	MS(ESI)
	methyl-7-(methylamino)-1,6-		m/z: 422.2
	naphthyridin-3-yl)phenyl)-3-		$(M+H^+)$
	(2-(1-		
	methylcyclopropyl)ethyl)urea		
	hydrochloride		
28	1-(2,4-difluoro-5-(2-methyl-7-		MS(ESI)
	(methylamino)-1,6-		m/z: 442.1
	naphthyridin-3-yl)phenyl)-3-		$(M+H^+)$
	(2-(1-		
	methoxycyclopropyl)ethyl)ure		
	a		
		E o c	
29	1-(cyclohexylmethyl)-3-(2-		MS(ESI)
	fluoro-4-methyl-5-(2-methyl-		m/z: 436.2
	7-(methylamino)-1,6-	H H	$(M+H^+)$
	naphthyridin-3-yl)phenyl)urea		
	hydrochloride		

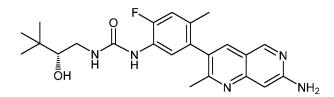
30	1-(3-ethoxy-3-methylbutyl)-3-		MS(ESI)
	(2-fluoro-4-methyl-5-(2-		m/z: 454.2
	methyl-7-(methylamino)-1,6-	H	$(M+H^+)$
	naphthyridin-3-yl)phenyl)urea		
	hydrochloride		
21		E o z	
31	1-(2-fluoro-4-methyl-5-(2-		MS(ESI)
	methyl-7-(methylamino)-1,6-		m/z: 438.2
	naphthyridin-3-yl)phenyl)-3-	п	$(M+H^+)$
	(2-(1-		
	methoxycyclopropyl)ethyl)ure		
	a hydrochloride		
32	1-(2-fluoro-4-methyl-5-(7-		MS(ESI)
	(methylamino)-1,6-		m/z: 426.2
	naphthyridin-3-yl)phenyl)-3-		(M+H ⁺)
	(3-methoxy-3-		
	methylbutyl)urea		
33	1-(2-fluoro-4-methyl-5-(2-		MS(ESI)
	methyl-7-(methylamino)-1,6-		m/z: 454.2
	naphthyridin-3-yl)phenyl)-3-		$(M+H^+)$
	(4-methoxy-4-		
	methylpentyl)urea		
	hydrochloride		
		F. A. F	
34	1-(2,4-difluoro-5-(2-methyl-7-		MS(ESI)
	((6-methylpyridin-3-		m/z: 505.3
	yl)amino)-1,6-naphthyridin-3-		$(M+H^+)$
	yl)phenyl)-3-(3,3-		
	dimethylbutyl)urea		
	dihydrochloride		

35	N-(3-(5-(3-(3,3- dimethylbutyl)ureido)-2- fluorophenyl)-2-methyl-1,6- naphthyridin-7-yl)acetamide		MS (ESI) m/z: 438.3 (M+H ⁺)
36	N-(3-(3-(3-(3,3- dimethylbutyl)ureido)-4- fluorophenyl)-2-ethyl-1,6- naphthyridin-7-yl)acetamide		MS(ESI) m/z: 452.2 (M+H ⁺)
37	N-(3-(5-(3-(3,3- dimethylbutyl)ureido)-2- fluorophenyl)-2-ethyl-1,6- naphthyridin-7-yl)acetamide	N O F H H H N O H H H H H H H H	MS(ESI) m/z: 452.2 (M+H ⁺)
38	N-(3-(4-fluoro-3-(3-(3-fluoro- 3-methylbutyl)ureido)phenyl)- 2-methyl-1,6-naphthyridin-7- yl)isobutyramide		MS(ESI) m/z: 470.3 (M+H ⁺)
39	N-(3-(5-(3-(4,4- difluorocyclohexyl)ureido)-4- fluoro-2-methylphenyl)-2- methyl-1,6-naphthyridin-7- yl)cyclopropanecarboxamide		MS(ESI) m/z: 512.2 (M+H ⁺)
40	N-(3-(5-(3-(2- cyclopropylethyl)ureido)-4- fluoro-2-methylphenyl)-2- methyl-1,6-naphthyridin-7- yl)cyclopropanecarboxamide		MS(ESI) m/z: 462.2 (M+H ⁺)

41	N-(3-(3-(4,4-		MS(ESI)
	difluorocyclohexyl)ureido)-4-		m/z: 498.2
	fluorophenyl)-2-methyl-1,6-		$(M+H^+)$
	naphthyridin-7-		
	yl)cyclopropanecarboxamide		
		E a c	
42	N-(3-(4-fluoro-2-methyl-5-(3-		MS(ESI)
	(2-		m/z: 506.2
	(trifluoromethoxy)ethyl)ureido		$(M+H^+)$
)phenyl)-2-methyl-1,6-		
	naphthyridin-7-		
	yl)cyclopropanecarboxamide		
43	N-(3-(5-(3-(3-cyano-3-		MS (ESI)
	methylbutyl)ureido)-2,4-		m/z: 467.2
	difluorophenyl)-2-methyl-1,6-		$(M+H^+)$
	naphthyridin-7-yl)acetamide		
44	1-(5-(7-amino-2-methyl-1,6-		MS (ESI)
	naphthyridin-3-yl)-2-fluoro-4-		m/z: 421.2
	methylphenyl)-3-(3-cyano-3-		$(M+H^+)$
	methylbutyl)urea		
45			
	1-(2-fluoro-4-methyl-5-(2-		MS(ESI)
	methyl-7-(methylamino)-1,6-		m/z: 410.0
	naphthyridin-3-yl)phenyl)-3-		(M+H+)
	isopentylurea		
46		r og Fγ∕γγF	
	1-(2,4-difluoro-5-(2-methyl-7-		MS(ESI)
	(methylamino)-1,6-		m/z: 414.0
	naphthyridin-3-yl)phenyl)-3-		(M+H+)
	isopentylurea		(111-11-)
L			

47	1-(2,4-difluoro-5-(7-(2- hydroxyethylamino)-2-methyl- 1,6-naphthyridin-3-yl)phenyl)- 3-(3,3-dimethylbutyl)urea		MS(ESI) m/z: 458.2 (M+H+)
48	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (tetrahydro-2H-pyran-4- yl)urea		MS(ESI) m/z: 424.2 (M+H+)
49	1-(3-cyano-3-methylbutyl)-3- (2,4-difluoro-5-(7-((2- hydroxyethyl)amino)-2- methyl-1,6-naphthyridin-3- yl)phenyl)urea	N [®] H H H H H H H H H H H H H H H H H H H	MS(ESI) m/z: 469.2 (M+H+)
50	1-(2,4-difluoro-5-(7-((2- hydroxyethyl)amino)-2- methyl-1,6-naphthyridin-3- yl)phenyl)-3-(3-fluoro-3- methylbutyl)urea		MS(ESI) m/z: 462.2 (M+H+)
51	1-(2,4-difluoro-5-(7-((2- hydroxyethyl)amino)-2- methyl-1,6-naphthyridin-3- yl)phenyl)-3-((3,3- difluorocyclobutyl)methyl)ure a	F F F F F F F F F F F F F F F F F F F	MS(ESI) m/z: 478.2 (M+H+)

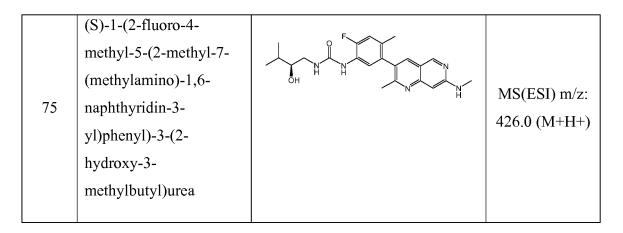
52	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (oxetan-2-ylmethyl)urea	O F N N N N N N N N N N N N N N N N N N	MS(ESI) m/z: 410.2 (M+H+)
53	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- ((tetrahydro-2H-pyran-2- yl)methyl)urea	Contraction of the second seco	MS(ESI) m/z: 438.2 (M+H+)
54	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (tetrahydrofuran-3-yl)urea	O O O O O O O O O O O O O O O O O O O	MS(ESI) m/z: 410.2 (M+H+)
55	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2-hydroxy-3,3- dimethylbutyl)urea	CH F C C C C C C C C C C C C C C C C C C	MS(ESI) m/z: 440.0 (M+H+)
56	(S)-1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2-hydroxy-3,3- dimethylbutyl)urea		MS(ESI) m/z: 440.2 (M+H+)


57	(R)-1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2-hydroxy-3,3- dimethylbutyl)urea	MS(ESI) m/z: 440.2 (M+H+)
58	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2-(1- hydroxycyclopropyl)ethyl)urea	MS(ESI) m/z: 424.2 (M+H+)
59	1-(4,4-dimethylpentan-2-yl)-3- (2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)urea	MS(ESI) m/z: 438.2 (M+H+)
60	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2-hydroxy-3-methylbutyl)urea	MS(ESI) m/z: 426.2 (M+H+)
61	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (3,3,3-trifluoro-2- hydroxypropyl)urea	MS(ESI) m/z: 452.0 (M+H+)

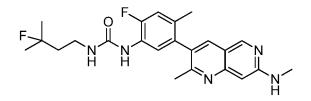
62	1-(5-(7-amino-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(2-hydroxy- 3,3-dimethylbutyl)urea	CH NH2	MS(ESI) m/z: 426.2 (M+H+)
63	1-(2-cyclopropyl-2- hydroxyethyl)-3-(2-fluoro-4- methyl-5-(2-methyl-7- (methylamino)-1,6- naphthyridin-3-yl)phenyl)urea		MS(ESI) m/z: 424.0 (M+H+)
64	1-(3,3-dimethylbutyl)-3-(2- fluoro-5-(7-((2- hydroxyethyl)amino)-2- methyl-1,6-naphthyridin-3-yl)- 4-methylphenyl)urea		MS(ESI) m/z: 454.2 (M+H+)
65	1-(3-fluoro-3-methylbutyl)-3- (2-fluoro-5-(7-((2- hydroxyethyl)amino)-2- methyl-1,6-naphthyridin-3-yl)- 4-methylphenyl)urea		MS(ESI) m/z: 458.0 (M+H+)
66	1-((3,3- difluorocyclobutyl)methyl)-3- (2-fluoro-5-(7-((2- hydroxyethyl)amino)-2- methyl-1,6-naphthyridin-3-yl)- 4-methylphenyl)urea	F F F	MS(ESI) m/z: 474.2 (M+H+)

67	1-(3-cyano-3-methylbutyl)-3- (2-fluoro-5-(7-((2- hydroxyethyl)amino)-2- methyl-1,6-naphthyridin-3-yl)- 4-methylphenyl)urea	N N N N N N N N N N N N N N N N N N N	MS(ESI) m/z: 465.0 (M+H+)
68	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2,4,4-trimethylpentan-2- yl)urea hydrochloride		MS(ESI) m/z: 452.0 (M+H+)
69	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3-(2- morpholinoethyl)urea		MS(ESI) m/z: 453.0 (M+H+)

Example 70


Synthesis of (R)-1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea

Purify 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea on a Chiralpak AS-H column eluting with MeOH/ IPA)/CO₂ to obtain the separated isomer. MS (m/z): 426.2 (M+1).

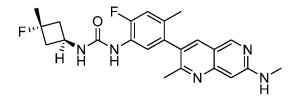

10 The following compounds are prepared essentially by the procedure of Example 70.

Ex	Chemical Name	Structure	Physical Data
No.			
71	(S)-1-(5-(7-amino-2- methyl-1,6- naphthyridin-3-yl)-2- fluoro-4-methylphenyl)- 3-(2-hydroxy-3,3- dimethylbutyl)urea	OH H H H H H	MS(ESI) m/z: 426.2 (M+H+)
72	 (R)-1-(4,4- dimethylpentan-2-yl)-3- (2-fluoro-4-methyl-5-(2- methyl-7- (methylamino)-1,6- naphthyridin-3- yl)phenyl)urea 		MS(ESI) m/z: 438.2 (M+H+)
73	 (S)-1-(4,4- dimethylpentan-2-yl)-3- (2-fluoro-4-methyl-5-(2- methyl-7- (methylamino)-1,6- naphthyridin-3- yl)phenyl)urea 		MS(ESI) m/z: 438.2 (M+H+)
74	(R)-1-(2-fluoro-4- methyl-5-(2-methyl-7- (methylamino)-1,6- naphthyridin-3- yl)phenyl)-3-(2- hydroxy-3- methylbutyl)urea		MS(ESI) m/z: 426.0 (M+H+)

Example 76

Synthesis of 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea

5

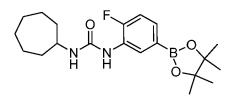

10

15

Combine prop-1-en-2-yl (2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)carbamate (2.5 g, 6.6 mmol), 3-fluoro-3-methylbutan-1-amine diacetate (1.8 g, 7.9 mmol), and N-methylpyrrolidine (2.7 mL, 26.0 mmole) in THF (50 mL) and heat at 50°C overnight. Evaporate under reduced pressure and partition between NaHCO₃ and EtOAc. Wash the organic layer with brine, dry over Na₂SO₄, concentrate in vacuo, and purify by silica gel chromatography (50-100% EtOAc/DCM) to obtain the title compound (2.0 g, 71%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.82 (s, 1 H), 8.33 (s, 1 H), 7.93 (d, J = 8 Hz, 1 H), 7.83 (s, 1 H), 7.16 (d, J = 8 Hz, 1 H), 6.73 (m, 1 H), 6.56 (m, 1 H), 6.52 (s, 1 H), 3.15 (m, 2 H), 2.82 (d, J = 5 Hz, 3 H), 2.27(s, 3 H), 1.94(s, 3 H), 1.73 (m, 2 H), 1.30 (d, J = 21.6 Hz, 6 H); MS (ESI) m/z: 428.2 (M+H⁺).

Example 77

Synthesis of 1-(3-fluoro-cis(3-methylcyclobutyl))-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea


Treat a solution of 3-methyl-(trans-3-fluorocyclobutanecarboxylic acid) (0.499 g, 3.78 mmol) in dioxane (20 mL) with TEA (1 mL, 7.19 mmol) and DPPA (0.800 mL, 3.71 mmol) and heat at 80°C until gas evolution ceases. Add 3-(5-amino-4-fluoro-2-methylphenyl)-N,2-dimethyl-1,6-naphthyridin-7-amine (1.0 g, 3.37 mmol) and heat the mixture at 50°C overnight. Concentrate the mixture to dryness, purify by silica gel chromatography (EtOAc/Hex). Add MeCN (20 mL), sonicate and collect the solid via filtration to afford the title compound (500 mg, 35%) as a pale yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.82 (s, 1 H), 8.23 (s, 1 H), 7.90 (d, J = 8.5 Hz, 1 H), 7.85 (s, 1

- H), 7.17 (d, J = 12.3 Hz, 1 H), 6.91 (d, J = 6.8 Hz, 1 H), 6.78-6.72 (m, 1 H), 6.52 (s, 1 H),
 4.14-4.13 (m, 1 H), 2.82 (d, J = 5.0 Hz, 3 H), 2.59-2.50 (m, 2 H), 2.48 (s, 3 H), 2.26 (s, 3 H),
 H), 2.07-1.96 (m, 2 H), 1.95 (s, 3 H), 1.45 (d, J = 22.3 Hz, 3 H); MS (ESI) m/z: 426.2 (M+H⁺).
- 15 The following compound is prepared essentially by the method of Example 77.

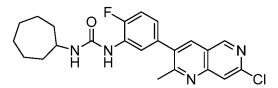
Ex	Chemical Name	Structure	Physical Data
No.			
78	1-(2,4-difluoro-5-(2-methyl-	o F F	MS(ESI) m/z:
	7-(methylamino)-1,6-		426.2 (M+H ⁺)
	naphthyridin-3-yl)phenyl)-3-		
	(3,3-dimethylcyclobutyl)urea		
	hydrochloride		

Synthesis of 1-cycloheptyl-3-(2-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl)urea.

5

10


Treat a solution of prop-1-en-2-yl (2-fluoro-5-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)phenyl)carbamate (0.460 g, 1.432 mmol) in THF (5 mL) with cycloheptylamine (0.195 g, 1.719 mmol) followed by a catalytic amount of 1methylpyrrolidine (0.012 g, 0.143 mmol) and heat at 60°C for 2 h. Concentrate the mixture to dryness, add MeCN, collect the solid via filtration and dry to afford the title compound (420 mg, 78%) as a white solid. ¹H NMR (400 MHz, DMSO-d₆): δ 8.50 (dd, J= 9, 1.7 Hz, 1 H), 8.33 (s, 1 H), 7.16 (m, 2 H), 6.60 (d, J= 7.0 Hz, 1 H), 3.64 (m, 1 H), 1.80 (m, 2 H), 1.50 (m, 10 H), 1.26 (s, 12 H); MS(ESI) m/z: 377.2 (M+H⁺).

The following compounds are prepared essentially by the method of Preparation 152.

Prep	Chemical Name	Structure	Physical
No.			Data
153	1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)urea		MS (ESI) m/z: 383.2 (M+H ⁺)
154	1-(3-fluoro-3-methylbutyl)-3-(2- fluoro-5-(4,4,5,5-tetramethyl- 1,3,2-dioxaborolan-2- yl)phenyl)urea	F H H H H H H H H H H H H H H H H H H H	MS (ESI) m/z: 369.2 (M+H ⁺)

155	1-(2,4-difluoro-5-(4,4,5,5- tetramethyl-1,3,2-dioxaborolan- 2-yl)phenyl)-3-(4,4,4-trifluoro- 3,3-dimethylbutyl)urea	F ₃ C N N N B O	MS (ESI) m/z: 437.2 (M+H ⁺)
156	1-(3,3-dimethylbutyl)-3-(2- fluoro-5-(4,4,5,5-tetramethyl- 1,3,2-dioxaborolan-2- yl)phenyl)urea	N H H B-O	MS (ESI) m/z: 365.2 (M+H ⁺)
157	1-(2-fluoro-4-methyl-5-(4,4,5,5- tetramethyl-1,3,2-dioxaborolan- 2-yl)phenyl)-3-(2- (1(trifluoromethyl)cyclopropyl)e thyl)urea	F ₃ C N H H H O	MS (ESI) m/z: 431.2 (M+H ⁺)

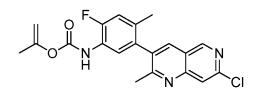
Synthesis of 1-(5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3cycloheptylurea.

5

Sparge a suspension of 1-cycloheptyl-3-(2-fluoro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)urea (0.420 g, 1.116 mmol), 7-chloro-2-methyl-1,6-naphthyridin-3-yl trifluoromethanesulfonate (0.438 g, 1.339 mmol) and K_2CO_3 (0.463 g, 3.35 mmol) in dioxane (4 mL) and H_2O (1 mL) with Ar, add Pd(PPh₃)₄ (0.064 g, 0.056

10

mmol) and heat at 60°C for 3 h. Concentrate the mixture to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (679 mg, 61%) as a white solid. MS(ESI) m/z: 427.1 (M+H⁺).


Prep	Chemical Name	Structure	Physical Data
No.			
159	1-(5-(7-chloro-2-methyl- 1,6-naphthyridin-3-yl)-2- fluoro-4-methylphenyl)-3-	F	MS (ESI) m/z: 433.1 (M+H ⁺)
	(3-fluoro-3- methylbutyl)urea		
160	1-(5-(7-chloro-2-methyl- 1,6-naphthyridin-3-yl)-2- fluorophenyl)-3-(3-fluoro-3- methylbutyl)urea		MS (ESI) m/z:419.1 (M+H ⁺)
161	1-(5-(7-chloro-1,6- naphthyridin-3-yl)-2-fluoro- 4-methylphenyl)-3-(3- fluoro-3-methylbutyl)urea		MS(ESI) m/z: 419.1 (M+H ⁺)
162	1-(5-(7-chloro-2-methyl- 1,6-naphthyridin-3-yl)-2,4- difluorophenyl)-3-(4,4,4- trifluoro-3,3- dimethylbutyl)urea	F ₃ C N N CI	MS(ESI) m/z: 487.1 (M+H ⁺)
163	1-(5-(7-chloro-2-methyl- 1,6-naphthyridin-3-yl)-2- fluorophenyl)-3-(3,3- dimethylbutyl)urea		MS (ESI) m/z: 415.2 (M+H ⁺)
164	1-(5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-(1-(trifluoromethyl)cyclopropy	F ₃ C	MS (ESI) m/z: 481.1 (M+H ⁺)

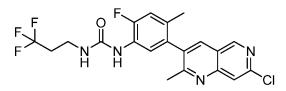
The following compounds are prepared essentially by the method of Preparation 158.

l)ethyl)urea	

Synthesis of prop-1-en-2-yl (5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-

methylphenyl)carbamate.

5


Treat a solution of 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4methylaniline (0.5 g, 1.657 mmol) in EtOAc (10 mL) with satd. NaHCO₃ (10 mL) followed by isopropenyl chloroformate (0.199 mL, 1.823 mmol) and stir the bi-phasic mixture at RT overnight. Separate the layers, extract the aqueous with EtOAc (2x), dry the combined organics over MgSO₄ and concentrate to dryness to the title compound (646 mg, 101%). MS (ESI) m/z: 386.1(M+H⁺).

The following compounds are prepared essentially by the method of Preparation 165.

Prep	Chemical Name	Structure	Physical
No.			Data
166	prop-1-en-2-yl (5-(7-chloro-2- methyl-1,6-naphthyridin-3-yl)- 2,4-difluorophenyl)carbamate		MS (ESI) m/z: 390.1 (M+H ⁺)
167	prop-1-en-2-yl (3-(7-chloro-2- methyl-1,6-naphthyridin-3-yl)-4- methylphenyl)carbamate		MS (ESI) m/z: 368.2 (M+H ⁺)
168	prop-1-en-2-yl (5-(7-chloro-2- methyl-1,6-naphthyridin-3-yl)-2- fluorophenyl)carbamate		MS (ESI) m/z: 372.1 (M+H ⁺)

Preparation 169

Synthesis of 1-(5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3,3,3-trifluoropropyl)urea.

5

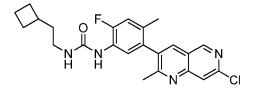
10

Heat a mixture of prop-1-en-2-yl (5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2fluoro-4-methylphenyl)carbamate (0.20 g, 0.518 mmol), 3,3,3-trifluoropropylamine hydrochloride (0.093 g, 0.622 mmol) and 1-methylpyrrolidine (0.068 mL, 0.648 mmol) in THF (5 mL) at 55°C overnight. Cool to RT, add H₂O, extract with EtOAc (2x), wash the combined organics with brine (2x), dry over MgSO₄ and concentrate to dryness to afford the title compound (220 mg, 96%). ¹H NMR (400 MHz, DMSO-d₆): δ 9.23 (s, 1 H), 8.53 (s, 1 H), 8.31 (s, 1 H), 8.01 (s, 1 H), 7.97 (d, J = 8.4 Hz, 1 H), 7.23 (d, J = 12.3 Hz, 1 H),

6.75 (t, J = 5.9 Hz, 1 H), 3.58-3.02 (m, 2 H), 2.42 (m, 2 H), 2.41 (s, 3 H), 1.95 (s, 3 H).

Prep	Chemical Name	Structure	Physical
No.			Data
170	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(4,4- difluorocyclohexyl)urea	F F N H H H H CI	MS(ESI) m/z: 467.2 (M+H ⁺)
171	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(4,4,4- trifluorobutyl)urea		MS(ESI) m/z: 459.1 (M+H ⁺)
172	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(2-	N N CI	MS(ESI) m/z: 413.1

The following compounds are prepared essentially by the method of Preparation 169.


	cyclopropylethyl)urea		(M+H ⁺)
173	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(4,4,4- trifluorobutyl)urea	F ₃ C N H H K CI	MS(ESI) m/z: 455.1 (M+H ⁺)
174	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(3-methoxy-3- methylbutyl)urea	MeO N N N N CI	MS(ESI) m/z: 445.2 (M+H ⁺)
175	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(2-(1- methylcyclopropyl)ethyl)urea	N CI	MS(ESI) m/z: 431.1 (M+H ⁺)
176	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(4,4- difluoropentyl)urea		MS(ESI) m/z: 451.1 (M+H ⁺)
177	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(4-fluoro-4- methylpentyl)urea		MS(ESI) m/z: 447.2 (M+H ⁺)
178	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(4,4,4- trifluoro-3,3-dimethylbutyl)urea	F ₃ C N N CI	MS(ESI) m/z: 483.2 (M+H ⁺)
179	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(3,3- dimethylbutyl)urea		MS (ESI) m/z: 433.2 (M+H ⁺)

180	1-(3-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-4- methylphenyl)-3-(3,3- dimethylbutyl)urea	N CI	MS (ESI) m/z: 411.2 (M+H ⁺)
181	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)-3-cyclohexylurea	N N CI	MS(ESI) m/z: 413.2 (M+H ⁺)
182	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)-3- cyclopentylurea	N H H CI	MS(ESI) m/z: 399.1 (M+H ⁺)
183	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)-3-(2- cyclopentylethyl)urea	N N N CI	MS (ESI) m/z: 427.2 (M+H ⁺)
184	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)-3-(2- cyclopropylethyl)urea	A O F O F O F O F O F O F O F O F O F O	MS(ESI) m/z :399.1 (M+H ⁺)
185	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(3-fluoro-3- methylbutyl)urea	F H H H H CI	MS(ESI) m/z: 437.1 (M+H ⁺)
186	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(3-hydroxy- 3-methylbutyl)urea		MS(ESI) m/z: 435.1 (M+H ⁺)
187	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)-3-(3,3,3-	F F H H H H H CI	MS(ESI) m/z: 427.1

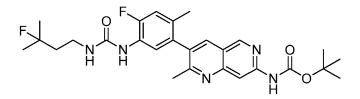
	trifluoropropyl)urea		(M+H ⁺)
188	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(2- cyclopropylethyl)urea		MS(ESI) m/z: 417.1 (M+H ⁺)
189	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(3,3- dimethylbutyl)urea		MS (ESI) m/z: 429.2 (M+H ⁺)
190	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3- cycloheptylurea	N CI	MS (ESI) m/z: 441.2 (M+H ⁺)

Preparation 191

Synthesis of 1-(5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-cyclobutylethyl)urea.

Treat a suspension of 3-cyclobutylpropanoic acid (0.204 g, 1.591 mmol) in dioxane (5 mL) with DPPA (0.438 g, 1.591 mmol), 5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylaniline (0.400 g, 1.326 mmol) and TEA (0.268 g, 2.65 mmol), stir at RT for 0.5 h then heat at 90°C for 4 h. Concentrate the mixture to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (348 mg, 61%) as a white solid. ¹H NMR (400 MHz, DMSO-d₆): δ 9.23 (d, J = 0.7 Hz, 1 H), 8.30 (m, 2 H), 7.98 (m, 2 H), 7.22 (d, J = 12.3 Hz, 1 H), 6.52 (t, J = 5.6

Hz, 1 H), 2.95 (q, J = 6.5 Hz, 2 H), 2.42 (s, 3 H), 2.25 (m, 1 H), 1.96 (m, 2 H), 1.94 (s, 3 H), 1.75 (m, 2 H), 1.52 (m, 4 H); MS(ESI) m/z: 427.1 (M+H⁺).


Prep	Chemical Name	Structure	Physical
No.			Data
192	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)-3-(2- cyclobutylethyl)urea		MS(ESI) m/z: 413.1 (M+H ⁺)
193	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro- 4-methylphenyl)-3-(3-fluoro- trans(3- methylcyclobutyl))urea		MS(ESI) m/z: 431.1 (M+H ⁺)
194	1-(5-(7-chloro-2-methyl-1,6- naphthyridin-3-yl)-2- fluorophenyl)-3-(3,3- dimethylcyclobutyl)urea	H H CI	MS(ESI) m/z: 413.2 (M+H ⁺)

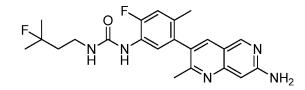
The following compounds are prepared essentially by the method of Preparation 191 .

5

Preparation 195

Synthesis of *tert*-butyl (3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)carbamate

Combine 1-(5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4methylphenyl)-3-(3-fluoro-3-methylbutyl)urea (8.1 g, 18.71 mmol), t-butylcarbamate (6.58 g, 56.1 mmol), potassium carbonate (7.76 g, 56.1 mmol), palladium (II) acetate (0.420 g, 1.871 mmol), and Xantphos (1.083 g, 1.871 mmol) in dioxane (100 mL). Sparge 5 the mixture with argon and sonication for 10 min, then heat at 95°C overnight. Dilute with EtOAc (100 mL), filter through diatomaceous earth, and wash the filter cake with EtOAc. Evaporate the filtrate and purify by silica gel chromatography (hexane/EtOAc) to yield the title compound (5.81 g, 60.5%). Dissolve the title compound (5.81 g, 11.31 mmol) in THF (100 mL), treat with Si-Thiol (Pd Scavenger) (1.3 mM/g, 9.4 mmol) and 10 stir overnight at RT. Remove the solids via filtration, concentrate the filtrate and dry under high vacuum to afford the title compound (5.81 g, 100%). ¹H NMR (400 MHz, DMSO- d_6): δ 10.02 (s, 1 H); 9.06 (d, J = 0.8 Hz, 1 H); 8.37 (s, 1 H); 8.13 (d, J = 24.9 Hz, 2 H); 7.96 (d, J = 8.5 Hz, 1 H); 7.20 (d, J = 12.3 Hz, 1 H); 6.57 (t, J = 5.7 Hz, 1 H); 3.11-3.18 (m, 2 H); 2.36 (s, 3 H); 1.95 (s, 3 H); 1.74 (dt, J = 19.9, 7.5 Hz, 2 H); 1.50 (s, 9 H); 1.29 (d, J = 22 Hz, 6 H).; MS (ESI) m/z: 514.3 (M+H⁺). 15


Prep	Chemical Name	Structure	Physical
No.			Data
196	tert-butyl (3-(5-(3-		MS (ESI)
	cycloheptylureido)-4-fluoro-2-		m/z: 552.2
	methylphenyl)-2-methyl-1,6-	N NHBoc	$(M+H^+)$
	naphthyridin-7-yl)carbamate		
197	tert-butyl (3-(4-fluoro-2-		MS(ESI)
	methyl-5-(3-(2-(1-	F ₃ C N N	m/z: 562.2
	(trifluoromethyl)cyclopropyl)e	N NHBoc	$(M+H^+)$
	thyl)ureido)phenyl)-2-methyl-		
	1,6-naphthyridin-7-		
	yl)carbamate		

The following compounds are prepared essentially by the method of Preparation 195.

198	tert-butyl (3-(4-fluoro-5-(3-(3-	MeO	MS (ESI)
	methoxy-3-		m/z: 526.3
	methylbutyl)ureido)-2-	✓ `N' `NHBoc	$(M+H^+)$
	methylphenyl)-2-methyl-1,6-		
	naphthyridin-7-yl)carbamate		
199	tert-butyl (3-(4-fluoro-5-(3-(3-		MS (ESI)
	fluoro-3-methylbutyl)ureido)-		m/z: 500.3
	2-methylphenyl)-1,6-	N NHBoc	$(M+H^+)$
	naphthyridin-7-yl)carbamate		

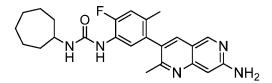
Example 79

Synthesis of 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-fluoro-3-methylbutyl)urea

5

10

15


Combine *tert*-butyl (3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)carbamate *t*-Butyl (3-(4-fluoro-5-(3-(3fluoro-3-methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)carbamate (5.81 g, 11.3 mmol) and a solution of tetrabutylammonium fluoride in THF (1 M, 91 mL, 91 mmol) and heat at 60°C overnight, then at ~68°C for an additional 24 h. Dilute the mixture with EtOAc (250 mL) and wash with water (2x) and brine. Back-extract the combined aqueous with EtOAc (100 mL), combine the organics, dry, concentrate, and purify by silica gel chromatography (0-2% MeOH/EtOAc). Triturate with acetonitrile (50 mL) and dry under high vacuum at 80°C to yield the title compound (2.88 g, 61.5%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.78 (d, J = 0.8 Hz, 1 H); 8.33 (s, 1 H); 7.92 (d, J = 8.5

Hz, 1 H); 7.83 (s, 1 H); 7.16 (d, J = 12.4 Hz, 1 H); 6.65 (s, 1 H); 6.55 (t, J = 5.7 Hz, 1 H); 6.23 (s, 2 H); 3.15 (q, J = 7.0 Hz, 2 H); 2.25 (s, 3 H); 1.95 (s, 3 H); 1.74 (dt, J = 19.9, 7.5 Hz, 2 H); 1.29 (d, J = 22 Hz, 6 H); MS (ESI) m/z: 414.2 (M+H⁺). The following compounds are prepared essentially by the method of Example 79.

Ex	Chemical Name	Structure	Physical
No.			Data
80	1-(5-(7-amino-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4-		MS (ESI) m/z: 426.2
	methylphenyl)-3-(3-methoxy- 3-methylbutyl)urea hydrochloride		(M+H ⁺)
81	1-(5-(7-amino-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(3-fluoro-3- methylbutyl)urea	F H H H NH2	MS (ESI) m/z: 400.2 (M+H ⁺)

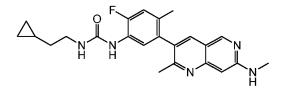
Example 82

5 Synthesis of 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3cycloheptylurea

Add HCl (6.0 M, 1.058 mL, 6.35 mmol) to a solution of tert-butyl (3-(5-(3-cycloheptylureido)-4-fluoro-2-methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)carbamate
(0.331 g, 0.635 mmol) in MeOH (10 mL) and heat at 50°C for 1 h. Cool to RT, concentrate to dryness, add DCM and TEA and concentrate to dryness again. Add water to the residue, extract with DCM (4x), dry the combined organics over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (MeOH/DCM) to afford the title compound (202 mg, 76%) as a yellow solid. ¹H NMR (400 MHz, DMSO-d₆): δ

15 8.82 (s, 1 H), 8.21 (s, 1 H), 7.95 (m, 2 H), 7.16 (d, J = 12.3 Hz, 1 H), 6.65-6.62 (m, 2 H),

6.39 (s, 2 H), 3.62 (s, 1 H), 2.28 (s, 3 H), 1.95 (s, 3 H), 1.76 (m, 2 H), 1.44-1.41 (m, 10 H); MS (ESI) m/z: 422.2 (M+H⁺).


The following compounds is prepared essentially by the method of Example 82.

Ex	Chemical Name	Structure	Physical
No.			Data
83	1-(5-(7-amino-2-methyl-1,6-		MS (ESI)
	naphthyridin-3-yl)-2-fluoro-4-	F ₃ C N N N N N N N N N N N N N N N N N N N	m/z: 462.2
	methylphenyl)-3-(2-(1-	✓ [•] N ⁻ [•] [•] NH ₂	$(M+H^+)$
	(trifluoromethyl)cyclopropyl)		
	ethyl)urea hydrochloride		

5

Example 84

Synthesis of 1-(2-cyclopropylethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea hydrochloride

10

Add $Pd_2(dba)_3$ (0.020 g, 0.022 mmol), 2-di-tert-butylphosphino-2',4',6'triisopropylbiphenyl [t-butyl X-Phos] (0.019 g, 0.045 mmol), methylamine (2.0M in THF, 1.114 mL, 2.228 mmol) and Cs_2CO_3 (0.436 g, 1.337 mmol) to a solution of 1-(5-(7chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-

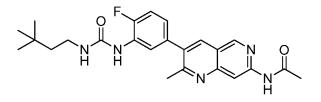
- 15 cyclopropylethyl)urea (0.184 g, 0.446 mmol) in dioxane (4 mL) and heat at 90°C for 3 h. Cool to RT, remove the solids via filtration, rinse with DCM, then THF, concentrate the filtrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford 1-(2cyclopropylethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea (108 mg, 59%) as a light yellow solid. ¹H NMR (400 MHz, DMSO-d₆):
- 20 δ 8.82 (s, 1 H), 8.28 (d, J = 2.4 Hz, 1 H), 7.95 (d, J = 8.5 Hz, 1 H), 7.85 (s, 1 H), 7.16 (d, J H), 7.16

= 12.4 Hz, 1 H), 6.78-6.72 (m, 1 H), 6.59 (m, 1 H), 6.52 (s, 1 H), 3.10 (q, J = 6.5 Hz, 2 H), 2.82 (d, J = 5.0 Hz, 3 H), 2.26 (s, 3 H), 1.95 (s, 3 H), 1.37 (m, 2 H), 0.70 (m, 1 H), 0.35 (m, 2 H), 0.04 (m, 2 H); MS(ESI) m/z: 408.2 (M+H⁺). Suspend 1-(2-cyclopropylethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-

5 3-yl)phenyl)urea, (0.108 g, 0.265 mmol) in acetonitrile (4 mL), treat with 0.5 M HCl (0.53 mL, 0.265 mmol), freeze and lyophilize the resulting clear solution to provide the title compound. MS(ESI) m/z: 408.2 (M+H⁺).

The following compounds are prepared essentially by the method of Example 84.

Ex	Chemical Name	Structure	Physical
No.			Data
85	1-cycloheptyl-3-(2-fluoro-5- (2-methyl-7-(methylamino)- 1,6-naphthyridin-3- yl)phenyl)urea hydrochloride		MS(ESI) m/z: 422.2 (M+H ⁺)
86	1-(3-fluoro-3-methylbutyl)-3- (2-fluoro-5-(2-methyl-7- (methylamino)-1,6- naphthyridin-3-yl)phenyl)urea hydrochloride	F H H H H H	MS (ESI) m/z: 414.2 (M+H ⁺)
87	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (3,3,3-trifluoropropyl)urea hydrochloride	F ₃ C N H H	MS(ESI) m/z: 436.2 (M+H ⁺)
88	1-(2,4-difluoro-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (4,4-difluorocyclohexyl)urea hydrochloride		MS(ESI) m/z: 462.2 (M+H ⁺)


89	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (4,4,4-trifluoro-3,3- dimethylbutyl)urea hydrochloride	CF ₃ N H H H H H H H H	MS(ESI) m/z: 478.2 (M+H ⁺)
90	1-(2,4-difluoro-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (4,4,4-trifluorobutyl)urea hydrochloride		MS(ESI) m/z: 454.2 (M+H ⁺)
91	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (3,3,3-trifluoropropyl)urea hydrochloride	F ₃ C N H H H	MS(ESI) m/z: 450.2 (M+H ⁺)
92	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (3-methoxy-3- methylbutyl)urea hydrochloride		MS(ESI) m/z: 440.2 (M+H ⁺)
93	1-(3-fluoro-3-methylbutyl)-3- (2-fluoro-4-methyl-5-(7- (methylamino)-1,6- naphthyridin-3-yl)phenyl)urea		MS(ESI) m/z: 414.2 (M+H ⁺)
94	1-(2,4-difluoro-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (2-(1- methylcyclopropyl)ethyl)urea	N H H H H	MS(ESI) m/z: 426.2 (M+H ⁺)

	hydrochloride		
95	1-(5-(7-(ethylamino)-2- methyl-1,6-naphthyridin-3- yl)-2-fluoro-4-methylphenyl)- 3-(3-fluoro-3- methylbutyl)urea		MS(ESI) m/z: 442.2 (M+H ⁺)
96	1-(3-fluoro-3-methylbutyl)-3- (2-fluoro-5-(7- (isopropylamino)-2-methyl- 1,6-naphthyridin-3-yl)-4- methylphenyl)urea	F H H H H H H H H H H H H H H H H H H H	MS(ESI) m/z: 456.3 (M+H ⁺)
97	1-(2-cyclobutylethyl)-3-(2- fluoro-4-methyl-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)urea hydrochloride		MS(ESI) m/z: 422.2 (M+H ⁺)
98	1-(2-cyclobutylethyl)-3-(2- fluoro-5-(2-methyl-7- (methylamino)-1,6- naphthyridin-3-yl)phenyl)urea hydrochloride		MS(ESI) m/z: 408.2 (M+H ⁺)
99	1-(4,4-difluoropentyl)-3-(2- fluoro-4-methyl-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)urea hydrochloride	F F O H H H H H H H	MS(ESI) m/z: 446.2 (M+H ⁺)
100	1-(3-fluoro-trans(3- methylcyclobutyl))-3-(2- fluoro-4-methyl-5-(2-methyl- 7-(methylamino)-1,6-		MS(ESI) m/z: 426.2 (M+H ⁺)

	naphthyridin-3-yl)phenyl)urea		
101	1-(2-fluoro-4-methyl-5-(2- methyl-7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (4-fluoro-4-methylpentyl)urea hydrochloride	F O N H H H H H H H	MS(ESI) m/z: 442.2 (M+H ⁺)
102	1-(2,4-difluoro-5-(2-methyl- 7-(methylamino)-1,6- naphthyridin-3-yl)phenyl)-3- (4,4,4-trifluoro-3,3- dimethylbutyl)urea hydrochloride	F ₃ C N N N N N N N N N N N N N N N N N N N	MS(ESI) m/z: 482.2 (M+H ⁺)

Example 103

Synthesis of N-(3-(3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6naphthyridin-7-yl)acetamide.

5

10

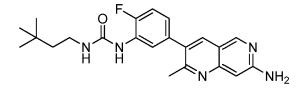
Sprage a mixture of 1-(5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2fluorophenyl)-3-(3,3-dimethylbutyl)urea (0.200 g, 0.482 mmol), XantPhos (0.028 g, 0.048 mmol), Cs₂CO₃ (0.314 g, 0.964 mmol) and acetamide (0.142 g, 2.410 mmol) in dioxane (5 mL) with Ar, add Pd₂(dba)₃ (0.022 g, 0.024 mmol), heat at 100°C for 7 h, then cool to RT overnight. Remove the solids via filtration through diatomaceous earth, rinse well with THF, wash the filtrate with brine (2x), dry over MgSO₄, concentrate to dryness and purify via silica gel chromatography (MeOH/DCM). Triturate with MTBE, collect the solid via filtration and dry to afford the title compound (105 mg, 49%) as a pale yellow solid. ¹H NMR (400 MHz, DMSO-d₆): δ 10.74 (s, 1 H), 9.15 (d, J = 0.8 Hz,

15 1 H), 8.49 (s, 1 H), 8.41 (d, J = 2.6 Hz, 1 H), 8.26 (dd, J = 7.9, 2.3 Hz, 1 H), 8.20 (s, 1 H), 7.30 (dd, J = 11.4, 8.4 Hz, 1 H), 7.03 (ddd, J = 8.4, 4.7, 2.3 Hz, 1 H), 6.57 (t, J = 5.6 Hz, 1 H), 3.11-3.05 (m, 2 H), 2.57 (s, 3 H), 2.15 (s, 3 H), 1.36-1.31 (m, 2 H), 0.88 (s, 9 H); MS (ESI) m/z: 438.3 (M+H⁺).

Ex	Chemical Name	Structure	Physical
No.			Data
104	N-(3-(5-(3-(3,3- dimethylbutyl)ureido)-4- fluoro-2-methylphenyl)-2- methyl-1,6-naphthyridin-7- yl)acetamide hydrochloride		MS (ESI) m/z: 452.2 (M+H ⁺)
105	N-(3-(5-(3-(3,3- dimethylbutyl)ureido)-2,4- difluorophenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide		MS (ESI) m/z: 456.2 (M+H ⁺)
106	N-(3-(5-(3-(3,3- dimethylbutyl)ureido)-2- methylphenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide hydrochloride		MS (ESI) m/z: 434.3 (M+H ⁺)
107	N-(3-(3-(3- cycloheptylureido)-4- fluorophenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide hydrochloride	N N N N N N N N N N N N N N N N N N N	MS(ESI) m/z: 450.2 (M+H ⁺)
108	N-(3-(3-(3- cyclohexylureido)-4- fluorophenyl)-2-methyl- 1,6-naphthyridin-7-		MS(ESI) m/z: 436.2 (M+H ⁺)

The following compounds are prepared essentially by the method of Example 103.

	-illo a store da la sedre alta e da	
	yl)acetamide hydrochloride	
109	N-(3-(3-(3- cyclopentylureido)-4- fluorophenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide hydrochloride	MS(ESI) m/z: 422.2 (M+H ⁺)
110	N-(3-(3-(3-(2- cyclopentylethyl)ureido)-4- fluorophenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide hydrochloride	MS(ESI) m/z :450.2 (M+H ⁺)
111	N-(3-(3-(3-(2- cyclopropylethyl)ureido)- 4-fluorophenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide hydrochloride	MS(ESI) m/z :422.2 (M+H ⁺)
112	N-(3-(3-(3-(3,3- dimethylcyclobutyl)ureido) -4-fluorophenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide	MS(ESI) m/z: 436.2 (M+H ⁺)
113	N-(3-(4-fluoro-5-(3-(3- fluoro-3- methylbutyl)ureido)-2- methylphenyl)-2-methyl- 1,6-naphthyridin-7- yl)propionamide hydrochloride	MS(ESI) m/z: 470.3 (M+H ⁺)


114	N-(3-(2,4-difluoro-5-(3-(3- fluoro-3- methylbutyl)ureido)phenyl)-2-methyl-1,6- naphthyridin-7- yl)acetamide	$F \rightarrow F$	MS(ESI) m/z: 460.2 (M+H ⁺)
115	N-(3-(2,4-difluoro-5-(3-(3- hydroxy-3- methylbutyl)ureido)phenyl)-2-methyl-1,6- naphthyridin-7- yl)acetamide		MS(ESI) m/z: 458.2 (M+H ⁺)
116	N-(3-(4-fluoro-2-methyl-5- (3-(3,3,3- trifluoropropyl)ureido)phe nyl)-2-methyl-1,6- naphthyridin-7- yl)cyclopropanecarboxami de hydrochloride		MS(ESI) m/z: 490.2 (M+H ⁺)
117	N-(3-(4-fluoro-5-(3-(3- fluoro-3- methylbutyl)ureido)-2- methylphenyl)-2-methyl- 1,6-naphthyridin-7- yl)acetamide hydrochloride		MS(ESI) m/z: 456.3 (M+H ⁺)
118	N-(3-(4-fluoro-5-(3-(3- fluoro-3- methylbutyl)ureido)-2- methylphenyl)-2-methyl- 1,6-naphthyridin-7- yl)cyclopropanecarboxami		MS(ESI) m/z: 482.3 (M+H ⁺)

	de hydrochloride		
119	N-(3-(4-fluoro-5-(3-(3- fluoro-3- methylbutyl)ureido)-2- methylphenyl)-2-methyl- 1,6-naphthyridin-7- yl)isobutyramide hydrochloride		MS(ESI) m/z: 484.2 (M+H ⁺)
120	N-(3-(4-fluoro-3-(3-(3,3,3- trifluoropropyl)ureido)phe nyl)-2-methyl-1,6- naphthyridin-7- yl)cyclopropanecarboxami de hydrochloride	F ₃ C N N N N N N N N N N N N N N N N N N N	MS(ESI) m/z: 476.2 (M+H ⁺)
121	N-(3-(2,4-difluoro-5-(3-(3- fluoro-3- methylbutyl)ureido)phenyl)-2-methyl-1,6- naphthyridin-7- yl)cyclopropanecarboxami de hydrochloride		MS(ESI) m/z: 486.2 (M+H ⁺)
122	N-(3-(2,4-difluoro-5-(3- (4,4,4- trifluorobutyl)ureido)pheny l)-2-methyl-1,6- naphthyridin-7- yl)cyclopropanecarboxami de hydrochloride		MS(ESI) m/z: 508.2 (M+H ⁺)

123	N-(3-(5-(3-(2- cyclopropylethyl)ureido)- 2,4-difluorophenyl)-2- methyl-1,6-naphthyridin-7- yl)cyclopropanecarboxami d hydrochloride		MS(ESI) m/z: 466.2 (M+H ⁺)
124	N-(3-(4-fluoro-2-methyl-5- (3-(4,4,4-trifluoro-3,3- dimethylbutyl)ureido)phen yl)-2-methyl-1,6- naphthyridin-7- yl)acetamide	F ₃ C N O H H H N O H H	MS (ESI) m/z: 506.2 (M+H ⁺)
125	N-(3-(4-fluoro-5-(3-(3- fluoro-3- methylbutyl)ureido)-2- methylphenyl)-2-methyl- 1,6-naphthyridin-7- yl)formamide hydrochloride		MS(ESI) m/z: 442.1 (M+H ⁺)

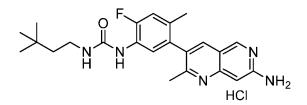
Example 126

Synthesis of 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-(3,3dimethylbutyl)urea.

WO 2013/134298

5

10


RT, remove the organics under reduced pressure and filter the aqueous residue. Add satd. NaHCO₃ to the filtrate until pH=8, extract with THF (3x), wash the combined organics with brine, dry over MgSO₄ and concentrate to dryness. Suspend the material in 4:1 MeCN/H₂O, collect the solid via filtration and dry to afford the title compound (47 mg, 74%) as a golden-tan solid. MS (ESI) m/z: 396.2 (M+H⁺).

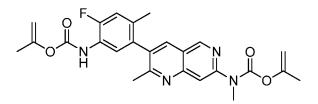
The following compounds are prepared essentially by the method of Example 126.

Ex	Chemical Name	Structure	Physical
No.			Data
127	1-(5-(7-amino-2-methyl-1,6- naphthyridin-3-yl)-2-fluoro-4- methylphenyl)-3-(4,4,4- trifluoro-3,3- dimethylbutyl)urea hydrochloride	F ₃ C N NH ₂	MS (ESI) m/z: 464.2 (M+H ⁺)
128	1-(5-(7-amino-2-methyl-1,6- naphthyridin-3-yl)-2,4- difluorophenyl)-3-(3,3- dimethylbutyl)urea hydrochloride	N H H H H H H H H H H H H H H H	MS (ESI) m/z: 414.2 (M+H ⁺)

Example 129

Synthesis of 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3,3-dimethylbutyl)urea hydrochloride.

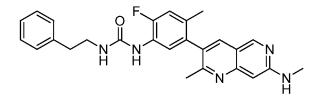
Sparge a suspension of 1-(5-(7-chloro-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3,3-dimethylbutyl)urea (0.267 g, 0.622 mmol), trifluoroacetamide (0.704 g, 6.22 mmol), Pd₂(dba)₃ (0.029 g, 0.031 mmol), XantPhos (0.036 g, 0.062 mmol) and Cs₂CO₃ (1.014 g, 3.11 mmol) in dioxane (5 mL) with argon and heat at 95°C overnight. Add additional trifluoroacetamide (0.704 g, 6.22 mmol), Pd₂(dba)₃ (0.029 g, 0.062 mmol), Cs₂CO₃ (1.014 g, 3.11 mmol) and dioxane (5 mL) and heat at 110°C overnight. Cool to RT, add water, extract with 4:1 EtOAc/THF (3x), wash the combined organics with satd. Na₂CO₃, then brine, dry over Na₂SO₄, concentrate to dryness and purify via silica gel chromatography (MeOH/DCM).
Re-purify via reverse-phase chromatography (MeCN/H₂O with 0.1% TFA), remove the organics under reduced pressure, neutralize the aqueous material with satd. Na₂CO₃,


- collect the resulting solid via filtration and dry to afford the free base (43 mg, 17%). Add HCl (0.5 M, 0.252 mL, 0.126 mmol) to a solution of the free base (0.043 g, 0.105 mmol) in MeCN (2 mL), dilute with H_2O (4 mL), freeze, lyophilize and dry to afford the title
- compound (44 mg, 94%) as a yellow solid. ¹H NMR (400 MHz, DMSO-d₆): δ 9.07 (s, 1 H), 8.52 (s, 1 H), 8.34 (s, 1 H), 8.03 (d, J = 8.4 Hz, 1 H), 7.45 (br s, 2 H), 7.23 (d, J = 12.3 Hz, 1 H), 6.74 (s, 1 H), 6.54 (t, J = 5.6 Hz, 1 H), 3.05 (m, 2 H), 2.45 (s, 3 H), 2.01 (s, 3 H), 1.31 (m, 2 H), 0.86 (s, 9 H); MS (ESI) m/z: 410.2 (M+H⁺).

20	The following compound	is prepared	essentially by th	e method of Example 129.
----	------------------------	-------------	-------------------	--------------------------

Ex No.	Chemical Name	Structure	Physical Data
130	1-(5-(7-amino-2-methyl- 1,6-naphthyridin-3-yl)- 2,4-difluorophenyl)-3-(3- fluoro-3-methylbutyl)urea hydrochloride	F N N N N N N N N N N N N N N N N N N N	MS (ESI) m/z: 418.2 (M+H ⁺)

Preparation 200


Synthesis of prop-1-en-2-yl (3-(4-fluoro-2-methyl-5-(((prop-1-en-2-yloxy)carbonyl)amino)phenyl)-2-methyl-1,6-naphthyridin-7-yl)(methyl)carbamate.

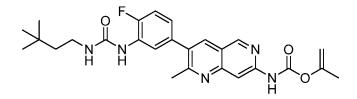
Add isopropenyl chloroformate (0.269 mL, 2.463 mmol) to a 0°C suspension of 3(5-amino-4-fluoro-2-methylphenyl)-N,2-dimethyl-1,6-naphthyridin-7-amine (0.73 g, 2.463 mmol) in pyridine (8 mL, 99 mmol), stir for 1 h at 0°C, warm to RT and concentrate to dryness. Add DCM, wash with H₂O (2x), back-extract the combined aqueous layers with DCM, wash the combined organics with brine, dry over Na₂SO₄,
concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford the title compound (337 mg, 29%). MS(ESI) m/z: 465.2 (M+H⁺).

Example 131

Synthesis of 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3yl)phenyl)-3-phenethylurea hydrochloride.

Add 1-methylpyrrolidine (0.075 mL, 0.717 mmol) to a solution of prop-1-en-2-yl (3-(4-fluoro-2-methyl-5-(((prop-1-en-2-yloxy)carbonyl)amino)phenyl)-2-methyl-1,6-naphthyridin-7-yl)(methyl)carbamate (0.333 g, 0.717 mmol) and phenethylamine (0.091

- 20 g, 0.753 mmol) in dioxane (6 mL) and heat at 50°C overnight. Cool to RT, add satd. NaHCO₃, extract with EtOAc (3x), dry the combined organics over MgSO₄ and concentrate to dryness. Dissolve the residue in dioxane (10 mL), add NaOH (1.0M, 2 mL), stir at RT for 2 h, then heat to 50°C overnight. Add NaOH (3M, 0.5 mL), heat the mixture at 55°C for 24 h, then add additional NaOH (3M, 0.25 mL) and heat at 60°C for
- 25 24 h. Cool the mixture to RT, add brine, extract with EtOAc (3x), dry the combined

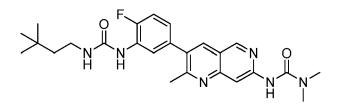

organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-phenethylurea (245 mg, 77%). MS(ESI) m/z: 444.2 (M+H⁺). Add 0.1N HCl (6.08 mL, 0.608 mmol) to a suspension of 1-(2-fluoro-4-methyl-

5 5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-phenethylurea (0.245 g, 0.552 mmol) in MeCN (2 mL), sonicate for 5 min, freeze, lyophilize and dry to afford the title compound (244 mg, 92%) as an orange solid. ¹H NMR (400 MHz, DMSO-d₆): δ 9.13 (s, 1 H), 8.58 (s, 1 H), 8.44 (s, 1 H), 8.04 (m, 2 H), 7.32-7.17 (m, 6 H), 6.66 (m, 2 H), 3.29 (m, 2 H), 2.91 (s, 3 H), 2.71 (t, J = 7.1 Hz, 2 H), 2.51 (s, 3 H), 2.01 (s, 3 H).

10

Preparation 201

Synthesis of prop-1-en-2-yl (3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2methyl-1,6-naphthyridin-7-yl)carbamate.

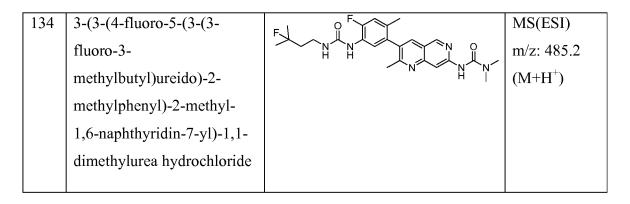

Add isopropenyl chloroformate (0.193 mL, 1.769 mmol) to a 0°C solution of 1-(5-

- 15 (7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-(3,3-dimethylbutyl)urea
 (0.636 g, 1.608 mmol) in pyridine (10 mL) and stir the mixture for 1 h as it warms to RT. Add water, extract with DCM (3x), dry the combined organics over MgSO₄ and concentrate to dryness to afford the title compound (585 mg, 76%). MS(ESI) m/z: 480.2 (M+H⁺).
- 20 The following compounds are prepared essentially by the method of Preparation 201.

Prep	Chemical Name	Structure	Physical
No.			Data
202	prop-1-en-2-yl (3-(4-fluoro-	F OF	MS(ESI)
	5-(3-(3-fluoro-3-		m/z: 498.3
	methylbutyl)ureido)-2-		$(M+H^+)$
	methylphenyl)-2-methyl-1,6-		
	naphthyridin-7-yl)carbamate		

Example 132

Synthesis of 3-(3-(3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6naphthyridin-7-yl)-1,1-dimethylurea hydrochloride.



Add 1-methylpyrrolidine (0.355 mL, 3.34 mmol) to a suspension of prop-1-en-2-yl (3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)carbamate (0.2 g, 0.417 mmol) and dimethylamine hydrochloride (0.136 g, 1.668 mmol) in dioxane (4 mL) and heat at 60°C overnight. Cool to RT, add satd. NaHCO₃,
extract with EtOAc (3x), dry the combined organics over MgSO₄, concentrate to dryness and purify via silica gel chromatography (EtOAc/Hex) to afford 3-(3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)-1,1-dimethylurea (99 mg, 51%). MS(ESI) m/z: 467.3 (M+H⁺). Treat the solid with MeCN (2 mL), add 0.1 N HCl (2.33 mL, 0.233 mmol), freeze, lyophilize and dry to afford the title compound (76 mg 71%) ¹H NMP (400 MHz, DMSO d.): & 9.52 (s, 1 H), 9.30 (s, 1 H), 8.64 (s, 1 H)

mg, 71%). ¹H NMR (400 MHz, DMSO-d₆): δ 9.52 (s, 1 H), 9.30 (s, 1 H), 8.64 (s, 1 H),
8.50 (s, 1 H), 8.41 (s, 1 H), 8.32 (dd, J = 7.9, 2.4 Hz, 1 H), 7.35 (dd, J = 11.3, 8.4 Hz, 1 H),
7.07 (m, 1 H), 6.66 (m, 1 H), 3.08 (m, 2 H), 3.00 (s, 6 H), 2.70 (s, 3 H), 1.34 (m, 2 H),
0.88 (s, 9 H); MS(ESI) m/z: 467.3 (M+H⁺).

20 The following compounds are prepared essentially by the method of Example 132.

Ex	Chemical Name	Structure	Physical
No.			Data
133	N-(3-(3-(3,3-		MS(ESI)
	dimethylbutyl)ureido)-4-		m/z: 479.3
	fluorophenyl)-2-methyl-1,6-		$(M+H^+)$
	naphthyridin-7-yl)azetidine-		
	1-carboxamide		

It is generally known that bioavailability of a poorly soluble compound may be enhanced by formulating it as a solid dispersion in a polymer matrix. Such solid dispersions are dispersions of drug in an inert carrier matrix prepared by melting (fusion) 5 of drug-polymer mixtures followed by solidification of the homogeneous molten mixture by rapid cooling (for example using processes such as hot melt extrusion), or by dissolving the drug and polymer in appropriate organic solvent followed by either solvent removal by evaporation (for example spray-drying) or by precipitation using antisolvent. Solid dispersions typically render the drug in an amorphous form which results in faster 10 dissolution rate and/or higher degree (extent) and duration of super saturation leading to enhanced oral bioavailability of poorly soluble compounds relative to the undispersed crystalline drug. Polymers that have been successfully used for solid dispersions include (but are not limited to) polyvinyl pyrrolidone (PVP), polyvinyl pyrrolidone-vinyl acetate (PVP-VA), hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose 15 acetate succinate (HPMCAS), hydroxypropyl methylcellulose phthalate (HPMCP-55), cellulose acetate phthalate (CAP), and Eudragit® EPO.

Physical and chemical stability of a solid dispersion are factors in the suitability of such formulations. Drug loading is another variable that can impact physical stability of the metastable amorphous form of drug as well as its *in vivo* performance. A preferred way to administer a solid dispersion in humans is by further formulating it as a capsule or a tablet by adding a pharmaceutically acceptable carrier, and optionally other excipients, suitable for such dosage form manufacturing and performance.

Cancer is increasingly recognized as a heterogeneous collection of diseases whose initiation and progression are induced by the aberrant function of one or more genes that

25 regulate DNA repair, genome stability, cell proliferation, cell death, adhesion, angiogenesis, invasion, and metastasis in cell and tissue microenvironments. Variant or aberrant function of the "cancer" genes may result from naturally occurring DNA polymorphism, changes in genome copy number (through amplification, deletion, chromosome loss, or duplication), changes in gene and chromosome structure (through chromosomal translocation, inversion, or other rearrangement that leads to deregulated

5 gene expression), and point mutations. Cancerous neoplasms may be induced by one aberrant gene function, and maintained by the same aberrant gene function, or maintenance and progression exacerbated by additional aberrant gene functions.

Beyond the genetic chromosomal aberrations mentioned above, each of the cancers may also include epigenetic modifications of the genome including DNA
methylation, genomic imprinting, and histone modification by acetylation, methylation, or phosphorylation. An epigenetic modification may play a role in the induction and/or maintenance of the malignancy.

Extensive catalogues of the cytogenetic aberrations in human cancer have been compiled and are maintained and regularly updated online (see The Mitelman Database of

15 Chromosome Aberrations in Cancer at the US National Cancer Institute (NCI) Cancer Genome Anatomy Project (CGAP) Web site: <u>http://cgap.nci.nih.gov</u>). The database includes chromosomal aberrations for at least some of the malignancies of the present invention. The Wellcome Trust Sanger Institute Cancer Genome Project maintains a detailed online "Cancer Gene Census" of all human genes that have been causally linked

20 to tumorigenesis (see http://www.sanger.ac.uk/genetics/CGP/Census) as well as the COSMIC (Catalogue of Somatic Mutations in Cancer) database of somatic mutations in human cancer (see http://www.sanger.ac.uk/genetics/CGP/cosmic). A further source containing abundant information on cytogenetic changes causally linked to various cancers is the Atlas of Genetics and Cytogenetics in Oncology and Haematology

25 (<u>http://atlasgeneticsoncology.org//Anomalies/Anomliste.html#MDS</u>). These databases also include chromosomal aberrations for at least some of the malignancies of the present invention.

Diagnosis of cancerous malignancies by biopsy, immunophenotyping and other tests are known and routinely used. In addition to high resolution chromosome banding and advanced chromosomal imaging technologies, chromosome aberrations in suspected cases of cancer can be determined through cytogenetic analysis such as fluorescence in situ hybridization (FISH), karyotyping, spectral karyotyping (SKY), multiplex FISH (M-

PCT/US2013/029176

FISH), comparative genomic hybridization (CGH), single nucleotide polymorphism arrays (SNP Chips) and other diagnostic and analysis tests known and used by those skilled in the art.

The Ras/Raf/MEK/MAPK signaling pathway relays extracellular stimuli to the nucleus, thereby regulating diverse cellular responses including cell proliferation, differentiation and apoptosis. Perturbation of these processes by aberrant MAPK signaling such as genetic alterations often leads to malignant transformation. The importance of this signaling pathway in neoplasms is evident through the discovery of many mutant alleles that activate this pathway in a variety of human malignancies.

- 10 Oncogenic mutations in receptor tyrosine kinases (RTKs), such as EGFR and cMet, or overexpression of RTKs and their ligands abnormally activate Ras and its downstream components. Activating Ras mutations have been detected in approximately 30% of human cancers. These mutations markedly diminish GTPase activity, thereby rendering Ras in the GTP-bound and active state. In mammals, the Ras family consists of three
- 15 genes: K-Ras, N-Ras and H-Ras. K-Ras is often mutated in epithelial cancers, such as pancreatic, lung and colorectal cancer, while N-Ras mutations often occur in melanoma, liver and myeloid (AML, CML) malignancies. Activating mutations of B-Raf, a member of Raf family, have been discovered with high frequency in melanoma and thyroid carcinoma and, to a lesser extent, in colorectal, ovarian and lung cancer. Somatic
- 20 mutations of MEK1 and MEK2 have been identified in melanoma patients. Finally, loss of negative regulators, such as members of the Sprouty family and GAPs (GTPase-activating proteins) such as NF1, can indirectly activate this pathway. It is believed that many tumors exhibit deregulation of Ras/Raf/MEK/MAPK pathway, making it an attractive target for therapeutic intervention.
- 25 The Raf proteins are composed of three members, A-Raf, B-Raf and C-Raf (also called Raf1), that play a pivotal role in transducing signals from Ras to downstream components MEK1/2 and ERK1/ERK2. Raf protein kinases have been shown to play a role in tumorigenesis including tumor cell proliferation, survival, invasion and angiogenesis, Sebolt-Leopold et al, *Nat Rev Cancer*, 2004, *4*: 937-947; Wellbrock et al,
- 30 Nat Rev Mol Cell Biol, 2004, 5: 875-885. MAPK pathway activation in tumor cells by multiple mechanisms such as mutations or overexpression of RTKs and Ras mutations, all go through Raf proteins. More importantly, activating mutations of B-RAF, Davies et al, *Nature*, 2002, 417: 949-954, are often observed in several malignancies including

melanoma, colorectal, lung, ovarian and thyroid carcinomas. Almost 90% of the B-Raf mutations are a T1799A change in exon 15 which results is a Val to Glu amino acid substitution (B-Raf V600E). This mutation in B-Raf leads to constitutive kinase activity approximately 500 fold greater than that of wild type protein, and malignant

5 transformation. Additional mutations, such as T529I, a B-Raf gatekeeper mutation and G468A, a B-Raf secondary mutation are also known and believed to play a role in causing, maintaining, or exacerbating malignant transformation, Whittaker et al, *Sci. Transl. Med.*, 2010, 2(35) ra41; Wan et al, *Cell*, 2004, *116*: 855-867.

Recently, a B-Raf specific kinase inhibitor vemurafenib (also called PLX-4032)
10 was approved by the United States Food and Drug Administration (FDA) for treatment of melanoma patients with B-Raf V600E mutation. Vemurafenib is efficacious and provides survival benefit in these patients. However, patients responsive to this drug generally develop drug resistance which leads to disease relapse in an average of 7 months. Similar to many other targeted therapies, the acquired resistance to B-Raf inhibition presents a
15 therapeutic challenge to long-term survival benefit in this patient population.

To improve the benefit of B-Raf inhibitors, research continues to identify the mechanisms which render mutant B-Raf expressing melanoma cells resistant to vemurafenib. Recent studies have indicated that reactivation of the MAPK pathway is a mechanism of resistance to B-Raf inhibition. Resistant mechanisms primarily involve

- 20 reactivation of ERK signaling through bypass mechanisms that are either Ras/Raf dependent, such as N-Ras activation, Nazarian et al, *Nature*. 2010, *468*: 973-7, H-Ras activation (Su et al, *New England Journal of Medicine*. 2012, *366*: 207-215), C-Raf upregulation, (Johannessen et al, *Nature*. 2010, *468*: 968-72; Montagut et al, *Cancer Res*. 2008, *68*: 4853-61), aberrantly spliced variants of B-Raf V600E (Poulikakos et al,
- Nature. 2011, 480: 387–390) or Ras/Raf independent (Tpl2/COT overexpression)
 Johannessen et al, Nature. 2010, 468: 968-72. Consequently, multiple mechanisms could attenuate the effect of B-Raf inhibition on MAPK signaling in B-RAF mutant cancers.
 Although a gatekeeper mutation of B-Raf (T529I) that could cause resistance to BRAF inhibition has not yet been clinically identified, such a mutation has been experimentally
- demonstrated to cause resistance, Whittaker et al, *Sci Transl Med.* 2010, 2(35): ra41.
 Recent studies have also suggested that activation of MAPK-redundant signaling
 pathways by RTKs such as IGF-1R or PDGFRβ could play a role in acquired resistance
 to B-Raf inhibition; Nazarian et al, *Nature*. 2010, 468: 973-7; Villanueva et al, *Cancer*

Cell. 2010, *18*: 683-95; Shi et al, *Cancer Res*. 2011, *71*: 5067-74. It is clear that MAPK reactivation is involved in many of these resistance mechanisms. A pan Raf inhibitor is expected to block MAPK reactivation.

Additionally, B-Raf specific inhibitors including vemurafenib and its close
analogue N- [3-(5-chloro-1H-pyrrolo[2,3-b]pyridine-3-carbonyl)-2,4difluorophenyl]propane-1-sulfonamide (PLX4720; a commercially available selective BRaf inhibitor) were demonstrated to induce paradoxical pathway activation through
dimerization with other Raf isoforms in a B-Raf wild type background, Hatzivassiliou G,
et al. *Nature*, 2010, *464*: 431-435; Poulikakos et al, *Nature*, 2010, *464*: 427-430; Heidorn,

et al, *Cell*, 2010, *140*: 209-221. Vemurafenib is believed to activate the Raf/MEK/ERK pathway through binding B-Raf wild type and stimulating B-Raf-C-Raf dimerization. This paradoxical pathway activation by B-Raf specific inhibition is believed to be a major reason of skin side effects (such as squamous cell carcinoma) in some melanoma patients treated with vemurafenib. Vemurafenib is not approved for treatment of cancer patients
with B-Raf wild type genetic background due to its paradoxical pathway activation

activity in this genetic background.

Certain exemplified compounds of Formula I are Raf kinase inhibitors inhibiting all isoforms of Raf proteins including A-Raf, B-Raf, C-Raf, and B-Raf V600E mutation. Due to their pan Raf activities, certain exemplified compounds of Formula I are active

- 20 against tumor cells with MAPK pathway activation by upstream signaling such as N-Ras mutation and K-Ras mutation. Therefore, the exemplified compounds of Formula I have the potential for treating cancer patients with B-Raf mutation (such as melanoma, colorectal, lung, ovarian and thyroid carcinoma), N-Ras mutation (such as melanoma, AML, CML, acute lymphocytic leukemia (ALL), CLL, liver cancer), (Schubbert et al,
- Nature Reviews Cancer, 2007, 7: 295; Pylayeva-Gupta et al, Nature Reviews Cancer,
 2011, 11: 761); or K-Ras mutation (such as biliary tract, cervical, colorectal, endometrial,
 lung, ovarian, pancreatic, and liver; Schubbert et al, Nature Reviews Cancer, 2007, 7:
 295; Pylayeva-Gupta et al, Nature Reviews Cancer, 2011, 11: 761) or other upstream
 MAPK pathway activating RTK mutation/overexpression. The exemplified compounds
- 30 of Formula I are also active against melanoma tumor cells which developed resistance to vemurafenib. Therefore, it is believed that the exemplified compounds will be effective for melanoma patients who have failed vemurafenib or other B-Raf inhibitors.

10

The exemplified compounds of Formula I are also inhibitors of c-KIT. C-KIT is a receptor tyrosine kinase that normally controls the function of primitive hematopoietic cells, melanocytes and germ cells. Overexpression and genetic mutations (such as L576P, K642E, T670I, and V654A) of c-KIT occur in melanoma, acute myelogenous leukemia, and gastrointestinal stromal tumors (GIST), therefore, the exemplified compounds have the potential to treat melanoma, acute myelogenous leukemia and GIST patients, Lennartsson et al, *Current Cancer Drug Targets*, 2006, *6*: 65.

Exemplified compounds of Formula I can be used as a single agent or in combination with one or more other approved drugs for treatment of cancer patients. These cancer patients include: melanoma patients with B-Raf mutation, melanoma patients who failed vemurafenib or other B-Raf inhibitors, melanoma patients with N-Ras mutation, melanoma patients with c-KIT overexpression or c-KIT mutation; colorectal

cancer patients with B-Raf mutation or K-Ras mutation; ovarian cancer patients with B-

- Raf mutation or K-Ras mutation; lung cancer patients with B-Raf mutation or K-Ras
 mutation; myeloid leukemia patients with N-Ras mutation, or c-KIT overexpression or c-KIT mutation; liver cancer patients with N-Ras or K-Ras mutation; pancreatic cancer patients with K-Ras mutation; thyroid carcinoma patients with B-Raf or N-Ras mutation; biliary tract cancer patients with K-Ras mutation; GIST patients with c-KIT mutation or overexpression.
- 20 The following studies demonstrate the Ras/Raf/MEK/ERK pathway signaling inhibitory activity of the exemplified compounds of Formula I. Assays evidencing pan Raf inhibition and pathway signaling inhibitory activity may be carried out substantially as follows or by similar assays affording similar data.

25

Expression and purification of B-Raf proteins

B-RafV600E (residues 433-726 containing V600E mutation) containing an Nterminal purification tag (MDRGSHHHHHHGS) is expressed and purified essentially as described previously (Wan et al, *Cell*, 2004, *116*, 855–867).

B-Raf V600E constructs containing a secondary T529I mutation or G468A

mutation are generated by site directed mutagenesis (Quikchange, Strategene) of the base

B-Raf (433-726, V600E) construct.

Sequence IDs of Screening constructs:

5 B-Raf-V600E (Seq ID No. 1)

MDRGSHHHHHHGSEDRNRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYK
 GKWHGDVAVKMLNVTAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAI
 VTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYLHAKSIIHRDLKSNNIFLH
 EDLTVKIGDFGLAT<u>E</u>KSRWSGSHQFEQLSGSILWMAPEVIRMQDKNPYSFQSDVYA
 FGIVLYELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMKRLMAECL
 KKKRDERPLFPQILASIELLARSLPKIHR

B-Raf-V600E+T529I (Seq ID No. 2)

15

10

MDRGSHHHHHHGSEDRNRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSFGTVYK GKWHGDVAVKMLNVTA PTPQQLQAFK NEVGVLRKTR HVNILLFMGYSTKPQLAIV<u>I</u>Q WCEGSSLYHHLHIIETKFE MIKLIDIARQ TAQGMDYLHA KSIIHRDLKSNNIFLHEDLT VKIGDFGLAT <u>E</u>KSRWSGSHQ FEOLSGSIJ W MAREVIRMOD KNRYSEOSDV YAEGIVLYEL MTGOLRYSNI

20 FEQLSGSILW MAPEVIRMQD KNPYSFQSDV YAFGIVLYEL MTGQLPYSNI NNRDQIIFMVGRGYLSPDLS KVRSNCPKAM KRLMAECLKK KRDERPLFPQ ILASIELLARSLPKIHR

B-Raf-V600E+G468A (Seq ID No. 3)

25

30

MDRGSHHHHHHGSEDRNRMKTLGRRDSSDDWEIPDGQITVGQRIGSGSF<u>A</u>TVYK GKWHGDVAVKMLNVTAPTPQQLQAFKNEVGVLRKTRHVNILLFMGYSTKPQLAI VTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYLHAKSIIHRDLKSNNIFLH EDLTVKIGDFGLAT<u>E</u>KSRWSGSHQFEQLSGSILWMAPEVIRMQDKNPYSFQSDVYA FGIVLYELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMKRLMAECL KKKRDERPLFPQILASIELLARSLPKIHR

B-Raf-wild type, full length (Seq ID No. 4, Invitrogen, PV3848)

35 MAPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL

DIRYGVSRIA YSKDFETLKV DFLSKLPEML KMFEDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK KRIEAIPQID KYLKSSKYIA

WPLQGWQATF GGGDHPPKSD LVPRHNQTSL YKKAGSAAAV VEENLYFQGS40 FTMAALSGGG GGGAEPGQAL FNGDMEPEAG AGAGAAASSA

NIKQMIKLTQ EHIEALLDKF GGEHNPPSIY LEAYEEYTSK LDALQQREQQ LLESLGNGTD FSVSSSASMD TVTSSSSSSL SVLPSSLSVF QNPTDVARSN PKSPQKPIVR VFLPNKQRTV VPARCGVTVR DSLKKALMMR GLIPECCAVY RIQDGEKKPI GWDTDISWLT GEELHVEVLE NVPLTTHNFV RKTFFTLAFC

DFCRKLLFQG FRCQTCGYKF HQRCSTEVPL MCVNYDQLDL LFVSKFFEHH PIPQEEASLA ETALTSGSSP SAPASDSIGP QILTSPSPSK SIPIPQPFRP

5 ADEDHRNQFG QRDRSSSAPN VHINTIEPVN IDDLIRDQGF RGDGGSTTGL SATPPASLPG SLTNVKALQK SPGPQRERKS SSSSEDRNRM KTLGRRDSSD

DWEIPDGQIT VGQRIGSGSF GTVYKGKWHG DVAVKMLNVT APTPQQLQAF KNEVGVLRKT RHVNILLFMG YSTKPQLAIV TQWCEGSSLY HHLHIIETKF

EMIKLIDIAR QTAQGMDYLH AKSIIHRDLK SNNIFLHEDL TVKIGDFGLA
TVKSRWSGSH QFEQLSGSIL WMAPEVIRMQ DKNPYSFQSD VYAFGIVLYE

LMTGQLPYSN INNRDQIIFM VGRGYLSPDL SKVRSNCPKA MKRLMAECLK KKRDERPLFP QILASIELLA RSLPKIHRSA SEPSLNRAGF QTEDFSLYAC

ASPKTPIQAG GYGAFPVH.

15 C-Raf (Seq ID No. 5, Millipore, # 14-352)

MSPILGYWKI KGLVQPTRLL LEYLEEKYEE HLYERDEGDK WRNKKFELGL EFPNLPYYID GDVKLTQSMA IIRYIADKHN MLGGCPKERA EISMLEGAVL DIRYGVSRIA YSKDFETLKV DFLSKLPEML KMFKDRLCHK TYLNGDHVTH PDFMLYDALD VVLYMDPMCL DAFPKLVCFK KRIEAIPQID KYLKSSKYIA

- 20 WPLQGWQATF GGGDHPPKSD LVPRGSQPKT PVPAQRERAP VSGTQEKNKI RPRGQRDSSD DWEIEASEVM LSTRIGSGSF GTVYKGKWHG DVAVKILKVV DPTPEQFQAF RNEVAVLRKT RHVNILLFMG YMTKDNLAIV TQWCEGSSLY KHLHVQETKF QMFQLIDIAR QTAQGMDYLH AKNIIHRDMK SNNIFLHEGL TVKIGDFGLA TVKSRWSGSQ QVEQPTGSVL WMAPEVIRMQ DNNPFSFQSD
- 25 VYSYGIVLYE LMTGELPYSH INNRDQIIFM VGRGYASPDL SKLYKNCPKA MKRLVADCVK KVKEERPLFP QILSSIELLQ HSLPKINRSA SEPSLHRAAH TEDINACTLT TSPRLPVF

MEK1 protein sequence used for screening (Seq ID no.6)

- 30 MELKDDDFEKISELGAGNGGVVFKVSHKPSGLVMARKLIHLEIKPAIRNQIIRELQ VLHECNSPYIVGFYGAFYSDGEISICMEHMDGGSLDQVLKKAGRIPEQILGKVSIA VIKGLTYLREKHKIMHRDVKPSNILVNSRGEIKLCDFGVSGQLIDSMANSFVGTRS YMSPERLQGTHYSVQSDIWSMGLSLVEMAVGRYPIPPPDAKELELMFGCQVEGD AAETPPRPRTPGRPLSSYGMDSRPPMAIFELLDYIVNEPPPKLPSGVFSLEFQDFVN
- 35 KCLIKNPAERADLKQLMVHAFIKRSDAEEVDFAGWLCSTIGLNQPSTPTHAAGV

Enzymatic assays measuring Raf kinase activity

Test compounds are evaluated for their inhibitory activities against one or more of wild type B-Raf, wild type C-Raf, B-Raf V600E, B-Raf V600E+T529I and B-Raf V600E+G468A. T529I is a B-Raf gatekeeper mutation and G468A is a B-Raf secondary 5 The enzymatic assays of B-Raf, C-Raf and B-Raf mutations evaluate a mutation. property of a Raf/MEK1 complex, which in the presence of ATP, catalyzes an enhanced ATP hydrolysis (Rominger, et al, Arch. Biochem. Biophys. 2007, 464: 130-137). The ADP formed is monitored by the well-known coupled PK/LDH (pyruvate kinase/lactate dehydrogenase) system in the form of NADH oxidation, which can be monitored and 10 detected by absorbance at 340nm (A340; for principal of the method see Schindler et al, Science, 2000, 289: 1938-1942). Raf activated MEK1 ATPase activity is a property shared by all forms of Raf proteins. In the B-Raf wild type enzymatic assay, the reaction mixture contains 1.2 nM B-Raf (Seq ID No. 4), 30 nM MEK1, 1000uM ATP, 3.5 units (per 100 ul) of PK, 5 units (per 100 ul) of LDH, 1 mM phosphoenol pyruvate (PEP), and 15 280 uM of NADH. In the C-Raf assay, the reaction mixture contains 0.6 nM C-Raf (Seq

- ID No. 5), 26 nM MEK1, 2000 uM ATP, and the same amount of PK, LDH, PEP and NADH as above. In the B-Raf V600E assay, the reaction mixture contains 1.6 nM B-Raf V600E (Seq ID No. 1), 26 nM MEK1, 200uM ATP and the same amount of PK, LDH, PEP and NADH as above. In the B-RafV600E+T529I (Seq ID No. 2) assay, the reaction
- mixture contains 6.2 nM B-Raf V600E+T529I, 30 nM MEK1, 200uM ATP and the same amount of PK, LDH, PEP and NADH as above. In the B-Raf V600E+G468A (Seq ID No. 3) assay, the reaction mixture contains 3.5 nM B-Raf, 30 nM MEK1, 200uM ATP and the same amount of PK, LDH, PEP and NADH as above. All assays are started by mixing the above mixture with test compound and monitoring at A340 continuously for approximately 5 hr. Reaction data at the 3 to 4 hour time frame are collected to calculate IC₅₀ values.

The exemplified compounds of the invention exhibit $IC_{508} < 100$ nM against one or more of wild type B-Raf, wild type C-Raf, B-Raf V600E, B-Raf V600E+T529I and B-Raf V600E+G468A.

30

These data evidence that the exemplified compounds of Formula I inhibit B-Raf V600E and C-Raf in these assays.

Enzymatic assay of c-KIT kinase activity

c-KIT is an important oncogene, and its overexpression and genetic mutations often occur in melanoma and gastrointestinal stromal tumor (GIST) patients. In the c-KIT enzymatic assay, the phosphorylation of poly E4Y by ATP catalyzed by c-KIT is monitored. The

- 5 ADP produced from the kinase reaction is coupled to pyruvate kinase/lactate dehydrogenase (PK/LDH) reactions where NAD is formed from pyruvate and NADH. NADH can be detected by absorbance at 340nm (for principal of the method see Schindler et al, *Science*, 2000, *289*: 1938-1942). The assay reaction mixture includes 6 nM c-KIT (Seq ID No. 7, generated by methods known and used by those of ordinary
- skill in the art), 1mg/mL Poly (Glu,Tyr) (Sigma), 1mM Phosphoenol-pyruvate, 280 μM NADH, 5U/3.5U (per 100 ul) Pyruvate Kinase/Lactate Dehydrogenase, 85 mM Tris, pH 7.5, 17 mM MgCl₂, 0.0042 % Triton® X-100, 0.005% BSA, 1% DMSO. Test compound is incubated with the reaction mixture for 0.5 hour before adding 200μM ATP to start the reaction at 30°C. Reaction rates at 0.5 to 1 h are used to calculate % inhibition and IC₅₀
- 15 values.

The exemplified compounds of the invention inhibit c-KIT with $IC_{50}s < 100$ nM.

c-KIT with N-terminal GST fusion (Seq ID No. 7)

LGYWKIKGLVOPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPNLPYYID 20 GDVKLTOSMAIIRYIADKHNMLGGCPKERAEISMLEGAVDIRYGVSRIAYSKDFETL KVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALDVVLYMDPMCLD AFPKLVCFKKRIEAIPQIDKYLKSSKYIWPLQGWQATFGGGDHPPKSDLVPRHNQTS LYKKAGSAAAVLEENLYFQGTYKYLQKPMYEVQWKVVEEINGNNYVYIDPTQLP YDHKWEFPRNRLSFGKTLGAGAFGKVVEATAYGLIKSDAAMTVAVKMLKPSAHL 25 TEREALMSELKVLSYLGNHMNIVNLLGACTIGGPTLVITEYCCYGDLLNFLRRKRD SFICSKQEDHAEAALYKNLLHSKESSCSDSTNEYMDMKPGVSYVVPTKADKRRSV RIGSYIERDVTPAIMEDDELALDLEDLLSFSYQVAKGMAFLASKNCIHRDLAARNIL LTHGRITKICDFGLARDIKNDSNYVVKGNARLPVKWMAPESIFNCVYTFESDVWSY GIFLWELFSLGSSPYPGMPVDSKFYKMIKEGFRMLSPEHAPAEMYDIMKTCWDADP 30 LKRPTFKQIVQLIEKQISESTNHIYSNLANCSPNRQKPVVDHSVRINSVGSTASSSQP LLVHDDV.

Measurement of Raf Kinase activities with native whole enzymes using KiNativ assay of ActivX Biosciences Inc.

To further evaluate the enzymatic pan Raf activities of test compounds, they are evaluated in a KiNativ assay developed and carried out by ActivX Biosciences Inc. using

5 whole cell lysates of A375 cells. A375 cells are human melanoma cells with a B-Raf V600E mutation.

Sample preparation: A375 cells from ATCC are lysed by sonication in commercially available lysis buffer, cleared by centrifugation, and the resulting supernatant gel filtered into a commercially available kinase reaction buffer containing 20 mM MnCl₂. Final protein concentration of lysates are 10 mg/mL. 5 μ L of each test compound is added from

- 100 μ M, 10 μ M, 1 μ M, or 0.1 μ M stock solutions in DMSO to 500 uL of lysate in duplicate for final concentrations of 1 μ M, 0.1 μ M, 0.01 μ M, and 0.001 μ M. 5 μ L of DMSO is added to 500 μ L of lysate in quadruplicate for controls. After 15 minute incubation, desthiobiotin-ATP acylphosphate probe is added to each sample to a final
- 15 concentration of 5 μM and incubated with the samples for 10 minutes. Following the probe reaction, samples are prepared for targeted mass spectrum analysis using ActivX standard protocol. Briefly, samples are prepared for trypsin digestion (denature, reduce alkylate), digested with trypsin, and desthio-biotinylated peptides are enriched on streptavidin resin.
- 20 Data collection: Enriched peptide samples are analyzed by LC-MS/MS on a Thermo-LTQ Velos ion trap mass spectrometer using ActivX data collection methodology for A375 cells.

Data analysis: All quantitation is performed by extracting characteristic fragment ion signals from targeted MS/MS spectra and comparing signals in control and treated

- 25 samples. ActivX software is used with manual validation/visual inspection performed as needed based on data flagging/filtering measures. All inhibition data points are visually verified, as are all data points showing variability outside of normal limits. Significance of data points showing >35% inhibition is determined according to the following formula: |average control peak areas – average treated peak areas|/(2*StdDev(Control peak areas)
- + |treated replicate one peak area treated replicate two peak area| > 0.8. IC50 values are determined using IGOR® software.

	IC50 (nM)				
Ex No.	B-Raf (V600E)	B-Raf (V600E)	A-Raf	C-Raf	
18	35	37	31	20	
76	16	22	120	170	

Table 1. Pan Raf activities of Examples in ActivX KiNativ A375 whole cell lysate assay

As shown in Table 1, Examples 18 and 76 inhibited A-Raf, B-RafV600E and \overline{C} -Raf in A375 cells with IC50 values < 170 nM.

5

Cell Proliferation Assays

To investigate if the in vitro biochemical activities translate into cellular activities, the examples are used to treat cancerous cell lines with MAPK pathway activation. The A375, HT-29, Colo-205 cells (ATCC) harbor a B-Raf V600E mutation. The HCT-116 cells (ATCC) harbor a K-Ras mutation/B-Raf wild type, and the SK-Mel-2 cells (ATCC)

10 harbor an N-Ras mutation/ B-Raf wild type. The exemplified compounds of Formula I inhibit proliferation of one or more of A375, HT-29, Colo-205, HCT-116 and MEL-2 cells with IC50s < 1 uM.</p>

A375 Cell Proliferation Assay

- A375 cells (catalog #CRL-1619) are obtained from the American Type Culture Collection (ATCC, Manassas, VA). Briefly, cells are grown in DMEM High Glucose supplemented with 10% characterized fetal bovine serum (Invitrogen, Carlsbad, CA) and 1% Penicillin/Streptomycin/L-Glutamine at 37 degrees Celsius, 5% CO₂, and 95% humidity. Cells are allowed to expand until reaching 70-95% confluency at which point they are subcultured or harvested for assay use. A serial dilution of test compound is dispensed into a 384-well black clear bottom plate in triplicate. Six hundred twenty-five
- cells are added per well in 50 μ L complete growth medium in the 384-well plate. Plates are incubated for 67 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. At the end of the incubation period, 10 μ L of a 440 μ M solution of resazurin (Sigma, St. Louis, MO)
- 25 in PBS is added to each well of the plate and plates are incubated for an additional 5 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. Plates are read on a Synergy2

reader (Biotek, Winooski, VT) using an excitation of 540 nm and an emission of 600 nm. Data is analyzed using Prism software (Graphpad, San Diego, CA) to calculate IC50 values.

HT-29 Cell Proliferation Assay

5

HT-29 cells (catalog #HTB-38) are obtained from the American Type Culture Briefly, cells are grown in McCoy's 5A Collection (ATCC, Manassas, VA). supplemented with 10% characterized fetal bovine serum (Invitrogen, Carlsbad, CA), and 1% Penicillin/Streptomycin/L-Glutamine at 37 degrees Celsius, 5% CO₂, and 95% humidity. Cells are allowed to expand until reaching 75-90% confluency at which point 10 they are subcultured or harvested for assay use. A serial dilution of test compound is dispensed into a 384-well black clear bottom plate in triplicate. One thousand twohundred fifty cells are added per well in 50 µL complete growth medium in the 384-well plate. Plates are incubated for 67 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. At the end of the incubation period, 10 µL of a 440 µM solution of resazurin

(Sigma, St. Louis, MO) in PBS is added to each well of the plate and plates are incubated 15 for an additional 5 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. Plates are read on a Synergy2 reader (Biotek, Winooski, VT) using an excitation of 540 nm and an emission of 600 nm. Data is analyzed using Prism software (Graphpad, San Diego, CA) to calculate IC50 values.

20 **Colo205 Cell Proliferation Assay**

Colo205 cells (catalog #HB-8307) are obtained from the American Type Culture Collection (ATCC, Manassas, VA). Briefly, cells are grown in RPMI 1640 supplemented with 10% characterized fetal bovine serum (Invitrogen, Carlsbad, CA), 1 mM sodium pyruvate, and 1% Penicillin/Streptomycin/L-Glutamine at 37 degrees Celsius, 5% CO₂,

- 25 and 95% humidity. Cells are allowed to expand until reaching 30-60% confluency at which point they are subcultured or harvested for assay use. A serial dilution of test compound is dispensed into a 384-well black clear bottom plate in triplicate. One thousand two-hundred fifty cells are added per well in 50 µL complete growth medium in the 384-well plate. Plates are incubated for 67 hours at 37 degrees Celsius, 5% CO₂, and
- 30 95% humidity. At the end of the incubation period, 10 µL of a 440 µM solution of resazurin (Sigma, St. Louis, MO) in PBS is added to each well of the plate and plates are incubated for an additional 5 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity.

Plates are read on a Synergy2 reader (Biotek, Winooski, VT) using an excitation of 540 nm and an emission of 600 nm. Data is analyzed using Prism software (Graphpad, San Diego, CA) to calculate IC50 values.

HCT-116 Cell Proliferation Assay

5

HCT-116 cells (catalog #CCL-247) are obtained from the American Type Culture Briefly, cells are grown in McCoy's 5A Collection (ATCC, Manassas, VA). supplemented with 10% characterized fetal bovine serum (Invitrogen, Carlsbad, CA), and 1% Penicillin/Streptomycin/L-Glutamine at 37 degrees Celsius, 5% CO₂, and 95% humidity. Cells are allowed to expand until reaching 75-90% confluency at which point 10 they are subcultured or harvested for assay use. A serial dilution of test compound is dispensed into a 384-well black clear bottom plate in triplicate. Six hundred twenty-five cells are added per well in 50 µL complete growth medium in the 384-well plate. Plates are incubated for 67 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. At the end of the incubation period, 10 µL of a 440 µM solution of resazurin (Sigma, St. Louis, MO)

in PBS is added to each well of the plate and plates are incubated for an additional 5 15 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. Plates are read on a Synergy2 reader (Biotek, Winooski, VT) using an excitation of 540 nm and an emission of 600 nm. Data is analyzed using Prism software (Graphpad, San Diego, CA) to calculate IC50 values.

20 **SK-Mel-2 Cell Proliferation Assay**

SK-Mel-2 cells (catalog #HTB-68) are obtained from the American Type Culture Collection (ATCC, Manassas, VA). Briefly, cells are grown in MEM supplemented with 10% characterized fetal bovine serum (Invitrogen, Carlsbad, CA), 1 mM sodium pyruvate, 0.1 mM non-essential amino acids, and 1% Penicillin/Streptomycin/L-Glutamine at 37 degrees Celsius, 5% CO₂, and 95% humidity. Cells are allowed to 25 expand until reaching 70-95% confluency at which point they are subcultured or harvested for assay use. A serial dilution of test compound is dispensed into a 384-well black clear bottom plate in triplicate. One thousand two-hundred fifty cells are added per well in 50 µL complete growth medium in the 384-well plate. Plates are incubated for 67

30 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. At the end of the incubation period, 10 µL of a 440 µM solution of resazurin (Sigma, St. Louis, MO) in PBS is added to each well of the plate and plates are incubated for an additional 5 hours at 37 degrees Celsius, 5% CO₂, and 95% humidity. Plates are read on a Synergy2 reader (Biotek, Winooski, VT) using an excitation of 540 nm and an emission of 600 nm. Data is analyzed using Prism software (Graphpad, San Diego, CA) to calculate IC₅₀ values.

5

10

Inhibition in vemurafenib-resistant melanoma cells

Vemurafenib (PLX4032) and PLX4720 are inhibitors of mutant B-Raf V600E (Johannessen et al, *Nature*, 2010, *468*: 968-72; Montagut et al, *Cancer Res.* 2008, *68*: 4853-61; Wagle et al, *Journal of Clinical Oncology*, 2011, *29*: 3085-96). Some of the patients who initially respond to vemurafenib therapy develop drug resistance and become refractory within an average of 7 months, Whittaker et al, *Sci Transl Med.* 2010, *2*: 35-41. A vemurafenib-resistant cell line is generated by chronic treatment of the human melanoma cell line A375 (ATCC) harboring the B-Raf V600E mutation with increasing concentrations PLX4720.

15 Generation of B-RafV600E melanoma cell lines resistant to B-Raf inhibition

To generate resistant cells, A375 cells are cultured in growth medium, essentially as described above for the A375 cell proliferation assay, in the presence of gradually increasing concentrations of N- [3-(5-chloro-1H-pyrrolo[2,3-b]pyridine-3-carbonyl)-2,4-difluorophenyl]propane-1-sulfonamide (PLX4720; a commercially available selective B-

- 20 Raf inhibitor) from 0.02 to 2 µM through approximately 4 months and 30 passages to afford a resistant cell line designated as A375res. The resistance of A375res to vemurafenib and PLX4720 is confirmed by the shift of IC50 values in Cell Titer Blue cell proliferation assay.
- In these A375res cells, PLX4720 loses much of its activity shifting more than 27-fold from an IC₅₀ of 369 nM to greater than 10 uM in a 72 hour proliferation assay performed essentially as described above for the A375 cell line. Similarly, the IC₅₀ of vemurafenib shifts from 175 nM to greater than 10 uM, a change of more than 57-fold. In contrast, the IC₅₀ shift of tested examples 9, 12, 13, 17, 20, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 44, 45, 47, 55, 57, 59, 60, 61, 65, 7276, 77, 79, 80, 81, 82, 83, 84, 88, 89, 91, 92, 93, 94, 97, 99, 100, 101, 123, 125, and 129, falls in a narrow range between 0.5 to

4.9 fold, with absolute IC₅₀ values between 9 nM and 504 nM. These data evidence that the examples of the invention inhibit cell proliferation in A375res cells in this assay.

Utility of compounds of formula I in the treatment of wt B-Raf tumor cells

Recent published studies (see above) suggest that B-Raf specific inhibitors, such as vemurafenib (PLX-4032) induce "paradoxical pathway activation" through B-Raf dimerization with other Raf isoforms in B-Raf wild type backgrounds. Vemurafenib is not approved for treatment of melanoma cancer patients with B-Raf wild type genetic background. This paradoxical pathway activation is also believed to be a cause of skin
side effects (such as squamous cell carcinoma) in some melanoma patients treated with vemurafenib.

Examples of Formula I are tested against HCT-116 cells harboring wild type B-Raf and K-Ras mutation. The phospho-ERK activities are evaluated as described below.

HCT-116 Cell pERK Assay

HCT-116 cells (catalog #CCL-247) are obtained from the American Type Culture 15 Collection (ATCC, Manassas, VA). Briefly, cells are grown in McCoy's 5A supplemented with 10% characterized fetal bovine serum (Invitrogen, Carlsbad, CA), and 1% Penicillin/Streptomycin/L-Glutamine at 37 degrees Celsius, 5% CO₂, and 95% humidity. Cells are allowed to expand until reaching 75-90% confluency at which point they are subcultured or harvested for assay use. HCT-116 cells suspended in complete 20 media are added to 384-well tissue culture treated plates (3 x 10^5 cells/mL; 7,500 cells per The cells are incubated overnight at 37 degrees Celsius, 5% CO₂, and 95% well). humidity. Next, test compound or DMSO diluted in complete media is added to the wells (0.25% final DMSO concentration). The plates are then incubated for 4 hours at 37 25 degrees Celsius, 5% CO₂, and 95% humidity. Following compound incubation, the cells are lysed at 4°C for 20 minutes with shaking. Cell lysates are centrifuged and the supernatant is transferred to a new plate. An aliquot of each lysate is transferred to a white 384-well assay plate. Using the AlphaScreen SureFire pERK kit (Perkin-Elmer, Waltham, MA), an acceptor bead mixture is added to each well and incubated for 2 h at room temperature in the dark. A donor bead mixture is then added to each well and 30 incubated for 2 h at room temperature in the dark. Plates are read using a Synergy2 plate 5

reader (Biotek, Winooski, VT) in Plate Mode with Timing Control. Read: (F)1: excitation: 680/30 nm, emission: Plug. 2: Excitation: Plug, emission: 570/100 nm. Top mirror 635 nm. Data is analyzed using Prism software (Graphpad, San Diego, CA) to calculate IC₅₀ values and Excel software (Microsoft, Redmond, WA) to calculate stimulation compared to control.

Examples of Formula I have minimal paradoxical pathway activation in the HCT-116 cell pERK assay

Examples of the invention evidence minimal paradoxical pathway stimulation, and maintain phospho-ERK inhibiting activities in HCT-116 cells harboring B-Raf wild

- 10 type and K-Ras genetic background. Tested examples 9, 12, 13, 18, 20, 23, 24, 45, 47, 55, 56, 57, 64, 76, 77, 79, 83, 84, 88, 89, 92, 93, 94, 125, and 129 substantially reduce phospho-ERK signal with IC50s between 2 nM and 96 nM in this assay. In contrast, vemurafenib stimulates the pERK signal in this assay at concentrations up to about 3 uM. Since compounds of Formula I also evidence c-Raf inhibition (prior assays, above) it is
- 15 believed that paradoxical pathway activation will be minimal, or will occur at only very low inhibitor concentrations, consistent with the potent suppression of pERK measured in the HCT-116 cells.

In Vivo Activity

A375 mouse xenograft pharmacodynamic assay

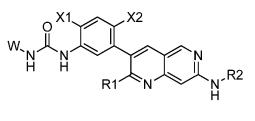
- 20 To evaluate the in vivo pharmacodynamic (PD) effects of compounds of Formula I, an A375 (B-Raf V600E) xenograft model is employed. Briefly, 10 x 10⁶ A375 tumor cells (ATCC) are prepared in a 1:1 matrigel mix (0.2 mL total volume) and implanted by subcutaneous injection in hind leg of nude female mice. A total of 4 mice each for each dosing group are employed. Treatment is initiated with oral administration (gavage) of
- 25 test compound or vehicle (20% captisol, 25 mM phosphate, pH2.0) in 0.2 mL volume when average tumor size reaches approximately 300 mg. After a fixed time interval, the tumors are harvested and the phospho-ERK levels are measured by ELISA (Enzymelinked immunosorbent assay). Treated groups are compared to the vehicle control group to calculate % inhibition. Data for compounds of Formula 1 are presented in table 2.

Example	Dose	Measured pERK
		inhibition 2 h post dose
Ex 9	20 mg/kg	78% inhibition
Ex 12	20 mg/kg	58% inhibition
Ex 17	20 mg/kg	89% inhibition
Ex 18	20 mg/kg	93% inhibition
Ex 24	20 mg/kg	45% inhibition
Ex 43	20 mg/kg	55% inhibition
Ex 47	20 mg/kg	50% inhibition
Ex 56	6 mg/kg	75% inhibition
Ex 57	20 mg/kg	96% inhibition
Ex 64	20 mg/kg	79% inhibition
Ex 75	20 mg/kg	89% inhibition
Ex 77	20 mg/kg	96% inhibition
Ex 78	20 mg/kg	68% inhibition
Ex 79	20 mg/kg	87% inhibition
Ex 89	20 mg/kg	84% inhibition
Ex 92	20 mg/kg	77% inhibition
Ex 103	20 mg/kg	90% inhibition
Ex 105	20 mg/kg	87% inhibition

Table 2. Inhibition of tumor pERK levels in A375 xenografts 2 h post dose

PCT/US2013/029176

To further evaluate in vivo activity of compounds of Formula I, an A375 xenograft tumor model is utilized. Briefly, 10×10^6 cells in a 1:1 matrigel mix (0.2 mL total volume) are implanted by subcutaneous injection in the hind leg of nude female mice. A total of 8-10 mice in each group are used. Treatment is initiated with oral


- 5 administration (gavage) of a test compound or vehicle (20% captisol, 25 mM phosphate, pH2.0) in 0.2 mL volume when tumor size reaches approximately 300-500 mg. Test compound is orally dosed twice or thrice a day for 21 days. Tumor growth and body weight are monitored over time to evaluate efficacy and signs of toxicity. Bidimensional measurements of tumors are performed twice a week and tumor volumes are calculated
- 10 based on the following formula: (Tumor Volume) = $[(L) \times (W^2) \times (\Pi/6)]$ where L is midaxis length and W is mid-axis width. Tumor volume data are transformed to a log scale to equalize variance across time and treatment groups. The log volume data are analyzed with a two-way repeated measures analysis of variance by time and treatment using the MIXED procedures in SAS software (version 8.2). The correlation model for the
- 15 repeated measures is spatial power. Treated groups are compared to the control group at each time point. The MIXED procedure is also used separately for each treatment group to calculate adjusted means and standard errors at each time point. Both analyses account for the autocorrelation within each animal and the loss of data that occurs when animals with large tumors are removed from the study early. The adjusted means and standard
- 20 errors are plotted for each treatment group versus time.

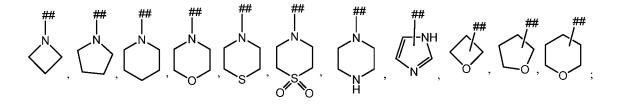
Example 18 was orally dosed twice a day at 12 mg/kg for 21 days or thrice per day at 8 or 12 mg/kg in the A375 mouse xenograft efficacy model. All three dosing groups evidenced tumor growth inhibition with minimal animal body weight loss. Example 76 was orally dosed twice a day at 10 or 30 mg/kg for 21 days in the A375

- 25 mouse xenograft efficacy model. Both dosing groups evidenced tumor growth inhibition and tumor growth regression with minimal animal body weight loss. Example 79 was orally dosed twice a day at 15 or 30 mg/kg for 21 days in the A375 mouse xenograft efficacy model. Both dosing groups evidenced tumor growth inhibition with minimal animal body weight loss. These data evidence in vivo activity by Examples 18, 76 and 79
- 30 and support that the enzymatic, cell lysate and cell proliferation data correlates to in vivo activity.

WE CLAIM:

1. A compound of formula I

Ι


- 5 wherein
 - W is C1-C6 alkyl, optionally substituted with one or more of Z1A, Z1B, Z1C, Z1D, or Z1E; C4-C8 cycloalkyl optionally substituted with one or two Z2A or Z2B substituents; or W is C4-C8 heterocyclyl optionally substituted with one or two Z2A or Z2B substituents;
- each Z1A, Z1B, Z1C, Z1D, Z1E is individually and independently C1-C6 alkyl, halogen, fluoro-C1-C6 alkyl wherein the alkyl chain is partially or completely fluorinated, C1-C4alkoxy, hydroxyl, fluoroC1-C4alkoxy wherein the alkyl chain is partially or completely fluorinated, cyano, C3-C8 cycloalkyl optionally substituted with one or two Z2A or Z2B substituents, phenyl optionally substituted with one to three Z2A or Z2B, or R5;
 - each Z2A and Z2B is individually and independently hydrogen, C1-C6 alkyl, halogen, fluoro-C1-C6 alkyl wherein the alkyl chain is partially or completely fluorinated, hydrogen, C1-C4alkoxy, hydroxyl, or cyano;

X1 is fluoro or H;

- 20 X2 is methyl, halogen, or hydrogen;
 - R1 is selected from C1-C4alkyl, or hydrogen;
 - R2 is C1-C6 alkyl, hydrogen, $-(CH_2)_n$ -OR3, $-(CH_2)_n$ -NR3(R4), $-(CH_2)_q$ -R5, -C(O)-R7, or R6-substituted C5-C6heteroaryl;

each R3 and R4 is individually and independently H, C1-C6 alkyl;

25 each R5 is independently and individually selected from the group consisting of

and wherein the symbol (##) is the point of attachment to $-(CH_2)_q$ - or Z1A-E;

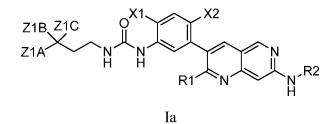
each R5 is optionally substituted with –(R6)_p;

each R6 is individually and independently C1-C6 alkyl, -(CH₂)_m-CN, -(CH₂)_m-OR3, -

- $(CH_2)_m$ -NR3(R4), – $(CH_2)_m$ -C(O)NR3(R4), or – $(CH_2)_m$ -C(O)-R3, wherein each alkyl or alkylene is optionally substituted with one or two C1-C6 alkyl;
 - R7 is C1-C6alkyl, C3-C8 cycloalkyl, hydrogen, –(CH₂)_m-NR3(R4), –(CH₂)_m-R5, or (CH₂)_m-OR3;

each m is individually and independently 0, 1, 2, or 3;

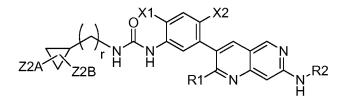
10 n is 2, 3, or 4;


p is 0, 1, 2, 3, or 4;

q is 0,1, or 2.

- A compound of claim 1 wherein W is C1-C6 alkyl, optionally substituted with Z1A, Z1B, Z1C, and Z1D.
- 15

5

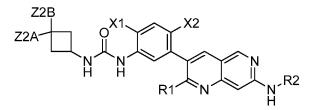

3. A compound of claim 2 having formula Ia.

20

wherein each Z1A, Z1B, Z1C is individually and independently C1-C2 alkyl, fluorine, trifluoromethyl, C1-C2alkoxy, hydroxyl, or cyano.

- 4. A compound of claim 3 wherein X1 is fluorine and X2 is hydrogen, fluorine, or methyl.
- 5. A compound of claim 4 wherein R1 and R2 are each methyl.
- 5
- 6. A compound of claim 1 having formula Ib.

10


- wherein Z2A and Z2B are individually and independently hydrogen, C1-C2 alkyl, trifluoromethyl, or C1-C2 alkoxy; and wherein r is 1 or 2.
- 7. A compound of claim 6 wherein X1 is fluorine and X2 is hydrogen, fluorine, or methyl.

15

- 8. A compound of claim 7 wherein R1 and R2 are each methyl.
- A compound of claim 1 wherein W is C4-C8 cycloalkyl optionally substituted by Z2A and Z2B substituents.

20

10. A compound of claim 9 having formula Ic.

- wherein each Z2A and Z2B is individually and independently C1-C2 alkyl, hydrogen, trifluoromethyl, or fluorine.
- 11. A compound of claim 10 wherein X1 is fluorine and X2 is hydrogen, fluorine, or5 methyl.
 - 12. A compound of claim 11 wherein R1 and R2 are each methyl.
- 13. A compound selected from 1-(3,3-dimethylbutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-cyano-3-methylbutyl)-3-(2.4-10 difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3dimethylbutyl)-3-(5-(2-ethyl-7-(methylamino)-1,6-naphthyridin-3-yl)-2,4difluorophenyl)urea, 1-(3,3-dimethylbutyl)-3-(5-(2-ethyl-7-(methylamino)-1,6naphthyridin-3-yl)-2-fluoro-4-methylphenyl)urea, 1-cycloheptyl-3-(2-fluoro-4-methyl-15 5-(2-methyl-7-(methylamino)-1.6-naphthyridin-3-yl)phenyl)urea, 1-(3.3-dimethylbutyl)-3-(4-methyl-3-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3,3dimethylbutyl)-3-(5-(2-ethyl-7-(methylamino)-1,6-naphthyridin-3-yl)-2fluorophenyl)urea, 1-cycloheptyl-3-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(3-cyano-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(2-20 methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-cyano-3methylbutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6yl)phenyl)urea, naphthyridin-3-yl)phenyl)-3-(2-(trifluoromethoxy)ethyl)urea, 1-(4.4difluorocyclohexyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-
- 25 naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-((3,3-dimethylcyclobutyl)methyl)urea, 1-(3,3dimethylcyclobutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(3,3-dimethylcyclobutyl)-3-(2-fluoro-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-
- methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3-methyl-trans(3-fluorocyclobutyl))urea, 1-(3,3-dimethylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3-dimethylbutyl)urea, 1-(3,3-

dimethylbutyl)-3-(4-fluoro-3-(2-methyl-7-(methylamino)-1,6-naphthyridin-3yl)phenyl)urea, 1-(2,2-dimethyltetrahydro-2H-pyran-4-yl)-3-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-((3,3dimethylcyclobutyl)methyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-

- 5 naphthyridin-3-yl)phenyl)urea, 1-(4,4-difluorocyclohexyl)-3-(2-fluoro-4-methyl-5-(7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-(trifluoromethyl)cyclopropyl)ethyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3-methoxy-3-methylbutyl)urea, 1-
- 10 (trans-4-cyano-4-methylcyclohexyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(cis-4-cyano-4-methylcyclohexyl)-3-(2-fluoro-4methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1methylcyclopropyl)ethyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-
- 15 naphthyridin-3-yl)phenyl)-3-(2-(1-methoxycyclopropyl)ethyl)urea, 1-(cyclohexylmethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(3-ethoxy-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-
- 20 methoxycyclopropyl)ethyl)urea, 1-(2-fluoro-4-methyl-5-(7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(3-methoxy-3-methylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(4-methoxy-4methylpentyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-((6-methylpyridin-3-yl)amino)-1,6naphthyridin-3-yl)phenyl)-3-(3,3-dimethylbutyl)urea, N-(3-(5-(3-(3,3-
- dimethylbutyl)ureido)-2-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2-ethyl-1,6-naphthyridin-7yl)acetamide, N-(3-(5-(3-(3,3-dimethylbutyl)ureido)-2-fluorophenyl)-2-ethyl-1,6naphthyridin-7-yl)acetamide, N-(3-(4-fluoro-3-(3-(3-fluoro-3methylbutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7-yl)isobutyramide, N-(3-30 (5-(3-(4,4-difluorocyclohexyl)ureido)-4-fluoro-2-methylphenyl)-2-methyl-1,6naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(5-(3-(2cyclopropylethyl)ureido)-4-fluoro-2-methylphenyl)-2-methyl-1,6-naphthyridin-7yl)cyclopropanecarboxamide, N-(3-(3-(3-(4,4-difluorocyclohexyl)ureido)-4
 - fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-

(4-fluoro-2-methyl-5-(3-(2-(trifluoromethoxy)ethyl)ureido)phenyl)-2-methyl-1,6naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(5-(3-cyano-3methylbutyl)ureido)-2,4-difluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-cyano-5 3-methylbutyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-fluoro-cis(3-methylcyclobutyl))-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3dimethylcyclobutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-10 methylphenyl)-3-(3-fluoro-3-methylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-methoxy-3-methylbutyl)urea, 1-(5-(7-amino-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-fluoro-3methylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2methylphenyl)-3-cycloheptylurea, 15 fluoro-4-methylphenyl)-3-(2-(1-(trifluoromethyl)cyclopropyl)ethyl)urea, 1-(2cyclopropylethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-cvcloheptyl-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-20 (methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3,3-trifluoropropyl)urea, 1-(2,4difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(4,4difluorocyclohexyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(4,4,4-trifluoro-3,3-dimethylbutyl)urea, 1-(2,4difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(4,4,4-25 trifluorobutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(3,3,3-trifluoropropyl)urea, 1-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3-methoxy-3methylbutyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-4-methyl-5-(7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-30 (methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-(1-methylcyclopropyl)ethyl)urea, 1-(5-(7-(ethylamino)-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-

fluoro-3-methylbutyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-5-(7-

(isopropylamino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, 1-(2-

cyclobutylethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-

PCT/US2013/029176

yl)phenyl)urea, 1-(2-cyclobutylethyl)-3-(2-fluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(4,4-difluoropentyl)-3-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-fluoro-trans(3methylcyclobutyl))-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1.6-naphthyridin-5 3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(4-fluoro-4-methylpentyl)urea, 1-(2,4-difluoro-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(4,4,4-trifluoro-3,3dimethylbutyl)urea, N-(3-(3-(3,3-dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(5-(3-(3,3-dimethylbutyl)ureido)-4-fluoro-2-10 methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(5-(3-(3,3dimethylbutyl)ureido)-2,4-difluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(5-(3-(3,3-dimethylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7yl)acetamide, N-(3-(3-(3-cycloheptylureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-N-(3-(3-(3-cyclohexylureido)-4-fluorophenyl)-2-methyl-1,6-7-yl)acetamide. 15 naphthyridin-7-yl)acetamide, N-(3-(3-(3-cyclopentylureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(3-(2-cvclopentvlethyl)ureido)-4fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(3-(3-(2cyclopropylethyl)ureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(3-(3,3-dimethylcyclobutyl)ureido)-4-fluorophenyl)-2-methyl-1,6-20 naphthyridin-7-yl)acetamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)propionamide, N-(3-(2,4-difluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(2,4-difluoro-5-(3-(3-hydroxy-3-methylbutyl)ureido)phenyl)-2-methyl-1,6naphthyridin-7-yl)acetamide, N-(3-(4-fluoro-2-methyl-5-(3-(3,3,3-25 trifluoropropyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7vl)cvclopropanecarboxamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7yl)cyclopropanecarboxamide, N-(3-(4-fluoro-5-(3-(3-fluoro-3methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)isobutyramide, 30 N-(3-(4-fluoro-3-(3-(3,3,3-trifluoropropyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7vl)cyclopropanecarboxamide, N-(3-(2,4-difluoro-5-(3-(3-fluoro-3methylbutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-7-yl)cyclopropanecarboxamide,

N-(3-(2,4-difluoro-5-(3-(4,4,4-trifluorobutyl)ureido)phenyl)-2-methyl-1,6-naphthyridin-

7-yl)cyclopropanecarboxamide, N-(3-(5-(3-(2-cyclopropylethyl)ureido)-2,4difluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)cyclopropanecarboxamide, N-(3-(4fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2-methylphenyl)-2-methyl-1,6-naphthyridin-7-yl)formamide, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluorophenyl)-3-

- 5 (3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(4,4,4-trifluoro-3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3,6-methylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3,7-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-1,6-naphthyridin-3-yl)-2,4-difluorophenyl)-3-(3-fluoro-3-methyl-3-(3-fluoro-3-methyl-3-glu
- 10 methylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-phenethylurea, 3-(3-(3-(3-(3,3-dimethylbutyl)ureido)-4fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)-1,1-dimethylurea, N-(3-(3-(3-(3,3dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)azetidine-1carboxamide, 3-(3-(4-fluoro-5-(3-(3-fluoro-3-methylbutyl)ureido)-2-methylphenyl)-2-
- 15 methyl-1,6-naphthyridin-7-yl)-1,1-dimethylurea, 1-(3,3-dimethylbutyl)-3-(2-fluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, 1-(2,4difluoro-5-(7-(2-hydroxyethylamino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)-3-(3,3dimethylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2-fluoro-4-methyl-5-
- (2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-isopentylurea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2,4,4-trimethylpentan-2-yl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-isopentylurea, 1-(3-fluoro-3-methylbutyl)-3-(2-fluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, 1-((3,3-
- difluorocyclobutyl)methyl)-3-(2-fluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6naphthyridin-3-yl)-4-methylphenyl)urea, 1-(3-cyano-3-methylbutyl)-3-(2-fluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)-4-methylphenyl)urea, (S)-1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2hydroxy-3,3-dimethylbutyl)urea, (R)-1-(2-fluoro-4-methyl-5-(2-methyl-7-
- 30 (methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2morpholinoethyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(2-(1-hydroxycyclopropyl)ethyl)urea, 1-(4,4dimethylpentan-2-yl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-

naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3-methylbutyl)urea, 1-(2-fluoro-4-methyl-5-(2methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3,3-trifluoro-2hydroxypropyl)urea, (R)-1-(4,4-dimethylpentan-2-yl)-3-(2-fluoro-4-methyl-5-(2-methyl-

- 10 ((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)-3-(3-fluoro-3-methylbutyl)urea, 1-(2,4-difluoro-5-(7-((2-hydroxyethyl)amino)-2-methyl-1,6-naphthyridin-3-yl)phenyl)-3-((3,3-difluorocyclobutyl)methyl)urea, (R)-1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3-methylbutyl)urea, (S)-1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-
- 15 naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3-methylbutyl)urea, (R)-1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, (S)-1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2-methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2-methylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2-methylphenyl)-3-(2-hydroxy-3,3-dimethylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(2-methylphenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea, 1-(3-methylphenyl)-3-(3-methylphenyl)
- 20 cyclopropyl-2-hydroxyethyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(oxetan-2-ylmethyl)urea, 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-((tetrahydro-2H-pyran-2-yl)methyl)urea, or 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-((tetrahydro-2H-pyran-2-yl)methyl)urea, or 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-((tetrahydro-2H-pyran-2-yl)methyl)urea, or 1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(methylamino)-1,6-naphthyridin-3-yl)urea
- 25 3-yl)phenyl)-3-(tetrahydrofuran-3-yl)urea.

14. A compound selected from 1-(3,3-dimethylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(2,4-difluoro-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(3,3-dimethylbutyl)urea, 1-(3-fluoro-3-

30 methylbutyl)-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3yl)phenyl)urea, 1-(3-fluoro-cis(3-methylcyclobutyl))-3-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, 1-(3-fluoro-3-methylbutyl)-3-(2fluoro-4-methyl-5-(7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)urea, N-(3-(3-(3-(3,3-

dimethylbutyl)ureido)-4-fluorophenyl)-2-methyl-1,6-naphthyridin-7-yl)acetamide, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(2-(1-(trifluoromethyl)cyclopropyl)ethyl)urea, 1-(5-(7-amino-2-methyl-1,6-naphthyridin-3-yl)-2-fluoro-4-methylphenyl)-3-(3-fluoro-3-methylbutyl)urea, (S)-1-(2-fluoro-4-methyl-5-(2-

5 methyl-7-(methylamino)-1,6-naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3,3dimethylbutyl)urea, or (R)-1-(2-fluoro-4-methyl-5-(2-methyl-7-(methylamino)-1,6naphthyridin-3-yl)phenyl)-3-(2-hydroxy-3,3-dimethylbutyl)urea.

15. A pharmaceutical composition comprising a compound of Claim 1, or a

10 pharmaceutically acceptable salt thereof, in association with a pharmaceutically acceptable carrier.

16. A method of treating mammalian diseases including melanoma, thyroid cancer, colon cancer, gastrointestinal stromal tumors, solid tumors, blood-borne cancers, AML,

15 or other cancers caused by activation of the RAS-RAF-MEK-ERK signaling pathway comprising administering to a patient in need thereof a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

17. A compound of Claim 1, or a pharmaceutically acceptable salt thereof, for use in20 therapy.

18. A compound of Claim 1, or a pharmaceutically acceptable salt thereof, for use in the treatment of a cancer which is thyroid cancer, ovarian cancer, melanoma, AML or
25 colorectal cancer.

19. Use of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for the treatment of a cancer which is thyroid cancer, ovarian cancer, melanoma, AML or colorectal cancer.

30

20. The method of claim 16, wherein the compound is administered orally, parenterally, by inhalation, or subcutaneously.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US 13/29176

A. CLASSIFICATION OF SUBJECT MATTER IPC(8) - A01N 43/42 (2013.01) USPC - 514/300; 514/588; 514/596				
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED				
Minimum documentation searched (classification system followed by classification symbols) USPC: 514/300 IPC: A01N 43/42 (2013.01)				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched USPC: 514/588; 514/596 (See Search Words Below)				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) PATBASE: PGPB, USPT, USOC, EPAB, JPAB Google: Scholar/Patent: RAF inhibitors naphthyridin urea cyclopropyl cyclobutyl ovarian thyroid cancer RAS-RAF-MEK-ERK signaling pathway				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages Relevant to claim N	о.	
Y	US 2008/0114006 A1 (FLYNN etal) 15 May 2008 (15. Claim 98	05.2008) para [0009];[0010];[0067]-[0070]; 1-20		
Y	ROSKOSKI. RAF protein-serine/threonine kinases: St Biophysical Research Communications, 399, 2010, 3 3; Pg 315, Figure 4	ructure and regulation in Biochemical and 13- 317. pg 314, Col 1, para 2-4, Figure		
Furthe	r documents are listed in the continuation of Box C.			
 Special categories of cited documents: "A" document defining the general state of the art which is not considered "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand 				
"E" earlier a filing da		 the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot considered novel or cannot be considered to involve an invent step when the document is taken alone 		
cited to special	nt which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified)	"Y" document of particular relevance; the claimed invention cannot considered to involve an inventive step when the document	is	
means "P" docume	nt referring to an oral disclosure, use, exhibition or other nt published prior to the international filing date but later than	combined with one or more other such documents, such combinati being obvious to a person skilled in the art "&" document member of the same patent family		
Date of the a	rity date claimed ctual completion of the international search 3 (14.04.2013)	Date of mailing of the international search report 1 3 MAY 2013		
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450		Authorized officer: Lee W. Young		
), Alexandria, Virginia 22313-1450). 571-273-3201	PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774		

Form PCT/ISA/210 (second sheet) (July 2009)